数据可用性临界点的流行病学推断:英国的甲型 H1N2 v 流感蔓延事件。

IF 3.7 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2024-08-01 Epub Date: 2024-08-07 DOI:10.1098/rsif.2024.0168
John A Fozard, Emma C Thomson, Christopher J R Illingworth
{"title":"数据可用性临界点的流行病学推断:英国的甲型 H1N2 v 流感蔓延事件。","authors":"John A Fozard, Emma C Thomson, Christopher J R Illingworth","doi":"10.1098/rsif.2024.0168","DOIUrl":null,"url":null,"abstract":"<p><p>Viruses that infect animals regularly spill over into the human population, but individual events may lead to anything from a single case to a novel pandemic. Rapidly gaining an understanding of a spillover event is critical to calibrating a public health response. We here propose a novel method, using likelihood-free rejection sampling, to evaluate the properties of an outbreak of swine-origin influenza A(H1N2)v in the United Kingdom, detected in November 2023. From the limited data available, we generate historical estimates of the probability that the outbreak had died out in the days following the detection of the first case. Our method suggests that the outbreak could have been said to be over with 95% certainty between 19 and 29 days after the first case was detected, depending upon the probability of a case being detected. We further estimate the number of undetected cases conditional upon the outbreak still being live, the epidemiological parameter <i>R</i> <sub>0</sub>, and the date on which the spillover event itself occurred. Our method requires minimal data to be effective. While our calculations were performed after the event, the real-time application of our method has potential value for public health responses to cases of emerging viral infection.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 217","pages":"20240168"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304334/pdf/","citationCount":"0","resultStr":"{\"title\":\"Epidemiological inference at the threshold of data availability: an influenza A(H1N2)v spillover event in the United Kingdom.\",\"authors\":\"John A Fozard, Emma C Thomson, Christopher J R Illingworth\",\"doi\":\"10.1098/rsif.2024.0168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Viruses that infect animals regularly spill over into the human population, but individual events may lead to anything from a single case to a novel pandemic. Rapidly gaining an understanding of a spillover event is critical to calibrating a public health response. We here propose a novel method, using likelihood-free rejection sampling, to evaluate the properties of an outbreak of swine-origin influenza A(H1N2)v in the United Kingdom, detected in November 2023. From the limited data available, we generate historical estimates of the probability that the outbreak had died out in the days following the detection of the first case. Our method suggests that the outbreak could have been said to be over with 95% certainty between 19 and 29 days after the first case was detected, depending upon the probability of a case being detected. We further estimate the number of undetected cases conditional upon the outbreak still being live, the epidemiological parameter <i>R</i> <sub>0</sub>, and the date on which the spillover event itself occurred. Our method requires minimal data to be effective. While our calculations were performed after the event, the real-time application of our method has potential value for public health responses to cases of emerging viral infection.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"21 217\",\"pages\":\"20240168\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304334/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2024.0168\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0168","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

感染动物的病毒经常会扩散到人类群体中,但个别事件可能会导致从单个病例到新型大流行的任何情况。快速了解外溢事件对于校准公共卫生响应至关重要。我们在此提出一种新方法,利用无似然拒绝采样来评估 2023 年 11 月在英国爆发的猪源性甲型 H1N2 流感 v 的特性。根据现有的有限数据,我们得出了疫情在发现首例病例后几天内消亡的概率的历史估计值。我们的方法表明,根据发现病例的概率,在发现首例病例后的 19 到 29 天之间,可以有 95% 的把握认为疫情已经结束。我们进一步估算了未发现病例的数量,条件是疫情仍在持续、流行病学参数 R 0 和溢出事件本身发生的日期。我们的方法需要最少的数据才能有效。虽然我们的计算是在事件发生后进行的,但我们方法的实时应用对于公共卫生应对新出现的病毒感染病例具有潜在价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epidemiological inference at the threshold of data availability: an influenza A(H1N2)v spillover event in the United Kingdom.

Viruses that infect animals regularly spill over into the human population, but individual events may lead to anything from a single case to a novel pandemic. Rapidly gaining an understanding of a spillover event is critical to calibrating a public health response. We here propose a novel method, using likelihood-free rejection sampling, to evaluate the properties of an outbreak of swine-origin influenza A(H1N2)v in the United Kingdom, detected in November 2023. From the limited data available, we generate historical estimates of the probability that the outbreak had died out in the days following the detection of the first case. Our method suggests that the outbreak could have been said to be over with 95% certainty between 19 and 29 days after the first case was detected, depending upon the probability of a case being detected. We further estimate the number of undetected cases conditional upon the outbreak still being live, the epidemiological parameter R 0, and the date on which the spillover event itself occurred. Our method requires minimal data to be effective. While our calculations were performed after the event, the real-time application of our method has potential value for public health responses to cases of emerging viral infection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信