Susana Pallarés, Joaquín Ortego, José Antonio Carbonell, Eduardo Franco-Fuentes, David T. Bilton, Andrés Millán, Pedro Abellán
{"title":"基因组、形态学和生理学数据支持一种高山潜水甲虫的快速生态型分化和初期物种分化。","authors":"Susana Pallarés, Joaquín Ortego, José Antonio Carbonell, Eduardo Franco-Fuentes, David T. Bilton, Andrés Millán, Pedro Abellán","doi":"10.1111/mec.17487","DOIUrl":null,"url":null,"abstract":"<p>An intricate interplay between evolutionary and demographic processes has frequently resulted in complex patterns of genetic and phenotypic diversity in alpine lineages, posing serious challenges to species delimitation and biodiversity conservation planning. Here we integrate genomic data, geometric morphometric analyses and thermal tolerance experiments to explore the role of Pleistocene climatic changes and adaptation to alpine environments on patterns of genomic and phenotypic variation in diving beetles from the taxonomically complex <i>Agabus bipustulatus</i> species group. Genetic structure and phylogenomic analyses revealed the presence of three geographically cohesive lineages, two representing trans-Palearctic and Iberian populations of the elevation-generalist <i>A. bipustulatus</i> and another corresponding to the strictly-alpine <i>A. nevadensis</i>, a narrow-range endemic taxon from the Sierra Nevada mountain range in southeastern Iberia. The best-supported model of lineage divergence, along with the existence of pervasive genetic introgression and admixture in secondary contact zones, is consistent with a scenario of population isolation and connectivity linked to Quaternary climatic oscillations. Our results suggest that <i>A. nevadensis</i> is an alpine ecotype of <i>A. bipustulatus</i>, whose genotypic, morphological and physiological differentiation likely resulted from an interplay between population isolation and local altitudinal adaptation. Remarkably, within the Iberian Peninsula, such ecotypic differentiation is unique to Sierra Nevada populations and has not been replicated in other alpine populations of <i>A. bipustulatus.</i> Collectively, our study supports fast ecotypic differentiation and incipient speciation processes within the study complex and points to Pleistocene glaciations and local adaptation along elevational gradients as key drivers of biodiversity generation in alpine environments.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17487","citationCount":"0","resultStr":"{\"title\":\"Genomic, morphological and physiological data support fast ecotypic differentiation and incipient speciation in an alpine diving beetle\",\"authors\":\"Susana Pallarés, Joaquín Ortego, José Antonio Carbonell, Eduardo Franco-Fuentes, David T. Bilton, Andrés Millán, Pedro Abellán\",\"doi\":\"10.1111/mec.17487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An intricate interplay between evolutionary and demographic processes has frequently resulted in complex patterns of genetic and phenotypic diversity in alpine lineages, posing serious challenges to species delimitation and biodiversity conservation planning. Here we integrate genomic data, geometric morphometric analyses and thermal tolerance experiments to explore the role of Pleistocene climatic changes and adaptation to alpine environments on patterns of genomic and phenotypic variation in diving beetles from the taxonomically complex <i>Agabus bipustulatus</i> species group. Genetic structure and phylogenomic analyses revealed the presence of three geographically cohesive lineages, two representing trans-Palearctic and Iberian populations of the elevation-generalist <i>A. bipustulatus</i> and another corresponding to the strictly-alpine <i>A. nevadensis</i>, a narrow-range endemic taxon from the Sierra Nevada mountain range in southeastern Iberia. The best-supported model of lineage divergence, along with the existence of pervasive genetic introgression and admixture in secondary contact zones, is consistent with a scenario of population isolation and connectivity linked to Quaternary climatic oscillations. Our results suggest that <i>A. nevadensis</i> is an alpine ecotype of <i>A. bipustulatus</i>, whose genotypic, morphological and physiological differentiation likely resulted from an interplay between population isolation and local altitudinal adaptation. Remarkably, within the Iberian Peninsula, such ecotypic differentiation is unique to Sierra Nevada populations and has not been replicated in other alpine populations of <i>A. bipustulatus.</i> Collectively, our study supports fast ecotypic differentiation and incipient speciation processes within the study complex and points to Pleistocene glaciations and local adaptation along elevational gradients as key drivers of biodiversity generation in alpine environments.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17487\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mec.17487\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.17487","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Genomic, morphological and physiological data support fast ecotypic differentiation and incipient speciation in an alpine diving beetle
An intricate interplay between evolutionary and demographic processes has frequently resulted in complex patterns of genetic and phenotypic diversity in alpine lineages, posing serious challenges to species delimitation and biodiversity conservation planning. Here we integrate genomic data, geometric morphometric analyses and thermal tolerance experiments to explore the role of Pleistocene climatic changes and adaptation to alpine environments on patterns of genomic and phenotypic variation in diving beetles from the taxonomically complex Agabus bipustulatus species group. Genetic structure and phylogenomic analyses revealed the presence of three geographically cohesive lineages, two representing trans-Palearctic and Iberian populations of the elevation-generalist A. bipustulatus and another corresponding to the strictly-alpine A. nevadensis, a narrow-range endemic taxon from the Sierra Nevada mountain range in southeastern Iberia. The best-supported model of lineage divergence, along with the existence of pervasive genetic introgression and admixture in secondary contact zones, is consistent with a scenario of population isolation and connectivity linked to Quaternary climatic oscillations. Our results suggest that A. nevadensis is an alpine ecotype of A. bipustulatus, whose genotypic, morphological and physiological differentiation likely resulted from an interplay between population isolation and local altitudinal adaptation. Remarkably, within the Iberian Peninsula, such ecotypic differentiation is unique to Sierra Nevada populations and has not been replicated in other alpine populations of A. bipustulatus. Collectively, our study supports fast ecotypic differentiation and incipient speciation processes within the study complex and points to Pleistocene glaciations and local adaptation along elevational gradients as key drivers of biodiversity generation in alpine environments.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms