具有主动自适应光电输出的三端量子点发光突触,用于复杂图像处理/并行计算

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2024-11-06 DOI:10.1016/j.matt.2024.06.050
Cong Chen , Zhenjia Chen , Di Liu , Xianghong Zhang , Changsong Gao , Liuting Shan , Lujian Liu , Tianjian Chen , Tailiang Guo , Huipeng Chen
{"title":"具有主动自适应光电输出的三端量子点发光突触,用于复杂图像处理/并行计算","authors":"Cong Chen ,&nbsp;Zhenjia Chen ,&nbsp;Di Liu ,&nbsp;Xianghong Zhang ,&nbsp;Changsong Gao ,&nbsp;Liuting Shan ,&nbsp;Lujian Liu ,&nbsp;Tianjian Chen ,&nbsp;Tailiang Guo ,&nbsp;Huipeng Chen","doi":"10.1016/j.matt.2024.06.050","DOIUrl":null,"url":null,"abstract":"<div><div>Machine vision enables machines to extract rich information from image or video data and make intelligent decisions. However, approaches using artificial synapse hardware systems significantly limit the real-time and accuracy in machine vision segmentation amid complex environments. Addressing this, we propose a novel three-terminal adaptive artificial-light-emitting synapse (AALS) capable of photoelectric double output along with adaptive behavior. The device uses silver nanowires (AgNWs) as polar conductive bridges to reduce reliance on transparent electrodes, while polyvinyl alcohol (PVA) dielectric layers adaptively modulate charge carrier concentrations in conductive channels. Additionally, we have designed an adaptive parallel neural network (APNN) and applied it to autonomous driving image processing. This innovation significantly reduces adaptation time and notably enhances mean pixel accuracy (MPA) for semantic segmentation under overexposure and low-light conditions by 142.2% and 304.4%, respectively. Therefore, this work introduces new strategies for advanced adaptive vision, promising significant potential in intelligent driving and neuromorphic computing.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-terminal quantum dot light-emitting synapse with active adaptive photoelectric outputs for complex image processing/parallel computing\",\"authors\":\"Cong Chen ,&nbsp;Zhenjia Chen ,&nbsp;Di Liu ,&nbsp;Xianghong Zhang ,&nbsp;Changsong Gao ,&nbsp;Liuting Shan ,&nbsp;Lujian Liu ,&nbsp;Tianjian Chen ,&nbsp;Tailiang Guo ,&nbsp;Huipeng Chen\",\"doi\":\"10.1016/j.matt.2024.06.050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Machine vision enables machines to extract rich information from image or video data and make intelligent decisions. However, approaches using artificial synapse hardware systems significantly limit the real-time and accuracy in machine vision segmentation amid complex environments. Addressing this, we propose a novel three-terminal adaptive artificial-light-emitting synapse (AALS) capable of photoelectric double output along with adaptive behavior. The device uses silver nanowires (AgNWs) as polar conductive bridges to reduce reliance on transparent electrodes, while polyvinyl alcohol (PVA) dielectric layers adaptively modulate charge carrier concentrations in conductive channels. Additionally, we have designed an adaptive parallel neural network (APNN) and applied it to autonomous driving image processing. This innovation significantly reduces adaptation time and notably enhances mean pixel accuracy (MPA) for semantic segmentation under overexposure and low-light conditions by 142.2% and 304.4%, respectively. Therefore, this work introduces new strategies for advanced adaptive vision, promising significant potential in intelligent driving and neuromorphic computing.</div></div>\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259023852400393X\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259023852400393X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

机器视觉使机器能够从图像或视频数据中提取丰富的信息并做出智能决策。然而,使用人工突触硬件系统的方法大大限制了复杂环境中机器视觉分割的实时性和准确性。针对这一问题,我们提出了一种新型三端自适应人工发光突触(AALS),该突触具有光电双输出和自适应行为。该装置使用银纳米线(AgNWs)作为极性导电桥,以减少对透明电极的依赖,而聚乙烯醇(PVA)电介质层可自适应调节导电通道中的电荷载流子浓度。此外,我们还设计了一种自适应并行神经网络(APNN),并将其应用于自动驾驶图像处理。这一创新大大缩短了适应时间,并显著提高了过曝和弱光条件下语义分割的平均像素精度(MPA),分别提高了 142.2% 和 304.4%。因此,这项工作为先进的自适应视觉引入了新策略,有望在智能驾驶和神经形态计算领域大显身手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Three-terminal quantum dot light-emitting synapse with active adaptive photoelectric outputs for complex image processing/parallel computing

Three-terminal quantum dot light-emitting synapse with active adaptive photoelectric outputs for complex image processing/parallel computing

Three-terminal quantum dot light-emitting synapse with active adaptive photoelectric outputs for complex image processing/parallel computing
Machine vision enables machines to extract rich information from image or video data and make intelligent decisions. However, approaches using artificial synapse hardware systems significantly limit the real-time and accuracy in machine vision segmentation amid complex environments. Addressing this, we propose a novel three-terminal adaptive artificial-light-emitting synapse (AALS) capable of photoelectric double output along with adaptive behavior. The device uses silver nanowires (AgNWs) as polar conductive bridges to reduce reliance on transparent electrodes, while polyvinyl alcohol (PVA) dielectric layers adaptively modulate charge carrier concentrations in conductive channels. Additionally, we have designed an adaptive parallel neural network (APNN) and applied it to autonomous driving image processing. This innovation significantly reduces adaptation time and notably enhances mean pixel accuracy (MPA) for semantic segmentation under overexposure and low-light conditions by 142.2% and 304.4%, respectively. Therefore, this work introduces new strategies for advanced adaptive vision, promising significant potential in intelligent driving and neuromorphic computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信