Celia García-Díaz, José A. Siles, José Luis Moreno, Carlos García, Antonio Ruiz-Navarro, Felipe Bastida
{"title":"小麦的物候期调节磷肥对植物与土壤微生物相互作用的影响","authors":"Celia García-Díaz, José A. Siles, José Luis Moreno, Carlos García, Antonio Ruiz-Navarro, Felipe Bastida","doi":"10.1007/s11104-024-06880-8","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aims</h3><p>Future phosphorus (P) fertilizer availability faces challenges due to limited phosphate rock mines and strict quality regulations regarding Cd contents in phosphate rock. In this study, conventional fertilization was partially substituted with meat bone meal (MBM), sludge (S), and the organo-mineral combination of S plus MBM (SMBM), in a wheat agroecosystem.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We investigated the impact of fertilization treatments and crop phenological stages on P availability, crop yield, and soil microbial responses. Analysis included enzyme activities, microbial biomass, and the composition of bacterial and fungal communities using metabarcoding. Additionally, we estimated functional genes related to the P cycle through qPCR. Crop yield and nutrient content in plants and soil were also determined.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Replacing traditional fertilization with MBM and SMBM maintained crop yield at levels equivalent to conventional fertilization. S and SMBM produced 70% and 40% (respectively) more bioavailable P compared to conventional treatment (Trad). Significant differences between treatments in soil microbial biomass were observed in the flag leaf stage. S increased in 20% total soil microbial biomass compared to Trad. Crop phenology had a stronger impact on bacterial and fungal communities than fertilization treatments. The use of S enhanced microbial biomass and activity. Yield in both MBM and SMBM plots exhibited no statistically significant differences compared to traditional fertilization.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Organo-mineral fertilization emerges as a sustainable strategy for maintaining crop production while improving soil functionality. Our findings emphasize the primary influence of crop phenology on shaping soil microbial communities and influencing microbial biomass and functionality.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phenological stages of wheat modulate effects of phosphorus fertilization in plant-soil microbial interactions\",\"authors\":\"Celia García-Díaz, José A. Siles, José Luis Moreno, Carlos García, Antonio Ruiz-Navarro, Felipe Bastida\",\"doi\":\"10.1007/s11104-024-06880-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Aims</h3><p>Future phosphorus (P) fertilizer availability faces challenges due to limited phosphate rock mines and strict quality regulations regarding Cd contents in phosphate rock. In this study, conventional fertilization was partially substituted with meat bone meal (MBM), sludge (S), and the organo-mineral combination of S plus MBM (SMBM), in a wheat agroecosystem.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>We investigated the impact of fertilization treatments and crop phenological stages on P availability, crop yield, and soil microbial responses. Analysis included enzyme activities, microbial biomass, and the composition of bacterial and fungal communities using metabarcoding. Additionally, we estimated functional genes related to the P cycle through qPCR. Crop yield and nutrient content in plants and soil were also determined.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>Replacing traditional fertilization with MBM and SMBM maintained crop yield at levels equivalent to conventional fertilization. S and SMBM produced 70% and 40% (respectively) more bioavailable P compared to conventional treatment (Trad). Significant differences between treatments in soil microbial biomass were observed in the flag leaf stage. S increased in 20% total soil microbial biomass compared to Trad. Crop phenology had a stronger impact on bacterial and fungal communities than fertilization treatments. The use of S enhanced microbial biomass and activity. Yield in both MBM and SMBM plots exhibited no statistically significant differences compared to traditional fertilization.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusion</h3><p>Organo-mineral fertilization emerges as a sustainable strategy for maintaining crop production while improving soil functionality. Our findings emphasize the primary influence of crop phenology on shaping soil microbial communities and influencing microbial biomass and functionality.</p>\",\"PeriodicalId\":20223,\"journal\":{\"name\":\"Plant and Soil\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant and Soil\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11104-024-06880-8\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-06880-8","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Phenological stages of wheat modulate effects of phosphorus fertilization in plant-soil microbial interactions
Aims
Future phosphorus (P) fertilizer availability faces challenges due to limited phosphate rock mines and strict quality regulations regarding Cd contents in phosphate rock. In this study, conventional fertilization was partially substituted with meat bone meal (MBM), sludge (S), and the organo-mineral combination of S plus MBM (SMBM), in a wheat agroecosystem.
Methods
We investigated the impact of fertilization treatments and crop phenological stages on P availability, crop yield, and soil microbial responses. Analysis included enzyme activities, microbial biomass, and the composition of bacterial and fungal communities using metabarcoding. Additionally, we estimated functional genes related to the P cycle through qPCR. Crop yield and nutrient content in plants and soil were also determined.
Results
Replacing traditional fertilization with MBM and SMBM maintained crop yield at levels equivalent to conventional fertilization. S and SMBM produced 70% and 40% (respectively) more bioavailable P compared to conventional treatment (Trad). Significant differences between treatments in soil microbial biomass were observed in the flag leaf stage. S increased in 20% total soil microbial biomass compared to Trad. Crop phenology had a stronger impact on bacterial and fungal communities than fertilization treatments. The use of S enhanced microbial biomass and activity. Yield in both MBM and SMBM plots exhibited no statistically significant differences compared to traditional fertilization.
Conclusion
Organo-mineral fertilization emerges as a sustainable strategy for maintaining crop production while improving soil functionality. Our findings emphasize the primary influence of crop phenology on shaping soil microbial communities and influencing microbial biomass and functionality.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.