P. Apostolidis, B. J. Villis, J. F. Chittock-Wood, J. M. Powell, A. Baumgartner, V. Vesterinen, S. Simbierowicz, J. Hassel, M. R. Buitelaar
{"title":"用于毫开尔文温度下射频测量的量子准电变容器","authors":"P. Apostolidis, B. J. Villis, J. F. Chittock-Wood, J. M. Powell, A. Baumgartner, V. Vesterinen, S. Simbierowicz, J. Hassel, M. R. Buitelaar","doi":"10.1038/s41928-024-01214-z","DOIUrl":null,"url":null,"abstract":"Radiofrequency reflectometry can provide fast and sensitive electrical read-out of charge and spin qubits in quantum dot devices coupled to resonant circuits. In situ frequency tuning and impedance matching of the resonator circuit using voltage-tunable capacitors (varactors) is needed to optimize read-out sensitivity, but the performance of conventional semiconductor- and ferroelectric-based varactors degrades substantially in the millikelvin temperature range relevant for solid-state quantum devices. Here we show that strontium titanate and potassium tantalate, materials which can exhibit quantum paraelectric behaviour with large field-tunable permittivity at low temperatures, can be used to make varactors with perfect impedance matching and resonator frequency tuning at 6 mK. We characterize the varactors at 6 mK in terms of their capacitance tunability, dissipative losses and magnetic field insensitivity. We use the quantum paraelectric varactors to optimize the radiofrequency read-out of carbon nanotube quantum dot devices, achieving a charge sensitivity of 4.8 μe Hz−1/2 and a capacitance sensitivity of 0.04 aF Hz−1/2. Using materials that show quantum paraelectricity, a phenomenon in which ferroelectric order is suppressed at very low temperature, voltage-tunable capacitors can be created for use in sensitive read-out circuits to measure cryogenic quantum devices.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 9","pages":"760-767"},"PeriodicalIF":33.7000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41928-024-01214-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantum paraelectric varactors for radiofrequency measurements at millikelvin temperatures\",\"authors\":\"P. Apostolidis, B. J. Villis, J. F. Chittock-Wood, J. M. Powell, A. Baumgartner, V. Vesterinen, S. Simbierowicz, J. Hassel, M. R. Buitelaar\",\"doi\":\"10.1038/s41928-024-01214-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radiofrequency reflectometry can provide fast and sensitive electrical read-out of charge and spin qubits in quantum dot devices coupled to resonant circuits. In situ frequency tuning and impedance matching of the resonator circuit using voltage-tunable capacitors (varactors) is needed to optimize read-out sensitivity, but the performance of conventional semiconductor- and ferroelectric-based varactors degrades substantially in the millikelvin temperature range relevant for solid-state quantum devices. Here we show that strontium titanate and potassium tantalate, materials which can exhibit quantum paraelectric behaviour with large field-tunable permittivity at low temperatures, can be used to make varactors with perfect impedance matching and resonator frequency tuning at 6 mK. We characterize the varactors at 6 mK in terms of their capacitance tunability, dissipative losses and magnetic field insensitivity. We use the quantum paraelectric varactors to optimize the radiofrequency read-out of carbon nanotube quantum dot devices, achieving a charge sensitivity of 4.8 μe Hz−1/2 and a capacitance sensitivity of 0.04 aF Hz−1/2. Using materials that show quantum paraelectricity, a phenomenon in which ferroelectric order is suppressed at very low temperature, voltage-tunable capacitors can be created for use in sensitive read-out circuits to measure cryogenic quantum devices.\",\"PeriodicalId\":19064,\"journal\":{\"name\":\"Nature Electronics\",\"volume\":\"7 9\",\"pages\":\"760-767\"},\"PeriodicalIF\":33.7000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41928-024-01214-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41928-024-01214-z\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-024-01214-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Quantum paraelectric varactors for radiofrequency measurements at millikelvin temperatures
Radiofrequency reflectometry can provide fast and sensitive electrical read-out of charge and spin qubits in quantum dot devices coupled to resonant circuits. In situ frequency tuning and impedance matching of the resonator circuit using voltage-tunable capacitors (varactors) is needed to optimize read-out sensitivity, but the performance of conventional semiconductor- and ferroelectric-based varactors degrades substantially in the millikelvin temperature range relevant for solid-state quantum devices. Here we show that strontium titanate and potassium tantalate, materials which can exhibit quantum paraelectric behaviour with large field-tunable permittivity at low temperatures, can be used to make varactors with perfect impedance matching and resonator frequency tuning at 6 mK. We characterize the varactors at 6 mK in terms of their capacitance tunability, dissipative losses and magnetic field insensitivity. We use the quantum paraelectric varactors to optimize the radiofrequency read-out of carbon nanotube quantum dot devices, achieving a charge sensitivity of 4.8 μe Hz−1/2 and a capacitance sensitivity of 0.04 aF Hz−1/2. Using materials that show quantum paraelectricity, a phenomenon in which ferroelectric order is suppressed at very low temperature, voltage-tunable capacitors can be created for use in sensitive read-out circuits to measure cryogenic quantum devices.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.