Jae-Young Bae, Gyeong-Seok Hwang, Young-Seo Kim, Jooik Jeon, Minseong Chae, Joon-Woo Kim, Sian Lee, Seongchan Kim, Soo-Hwan Lee, Sung-Geun Choi, Ju-Yong Lee, Jae-Hwan Lee, Kyung-Sub Kim, Joo-Hyeon Park, Woo-Jin Lee, Yu-Chan Kim, Kang-Sik Lee, Jeonghyun Kim, Hyojin Lee, Jung Keun Hyun, Ju-Young Kim, Seung-Kyun Kang
{"title":"用于连接大脑皮层的可生物降解、可自行部署的电子帐篷电极","authors":"Jae-Young Bae, Gyeong-Seok Hwang, Young-Seo Kim, Jooik Jeon, Minseong Chae, Joon-Woo Kim, Sian Lee, Seongchan Kim, Soo-Hwan Lee, Sung-Geun Choi, Ju-Yong Lee, Jae-Hwan Lee, Kyung-Sub Kim, Joo-Hyeon Park, Woo-Jin Lee, Yu-Chan Kim, Kang-Sik Lee, Jeonghyun Kim, Hyojin Lee, Jung Keun Hyun, Ju-Young Kim, Seung-Kyun Kang","doi":"10.1038/s41928-024-01216-x","DOIUrl":null,"url":null,"abstract":"High-density, large-area electronic interfaces are a key component of brain–computer interface technologies. However, current designs typically require patients to undergo invasive procedures, which can lead to various complications. Here, we report a biodegradable and self-deployable tent electrode for brain cortex interfacing. The system can be integrated with multiplexing arrays and a wireless module for near-field communication and data transfer. It can be programmably packaged and self-deployed using a syringe for minimally invasive delivery through a small hole. Following delivery, it can expand to cover an area around 200 times its initial size. The electrode also naturally decomposes within the body after use, minimizing the impact of subsequent removal surgery. Through in vivo demonstrations, we show that our cortical-interfacing platform can be used to stimulate large populations of cortical activities. A biodegradable electronic tent electrode array that can be inserted into the brain cortex using a syringe, where it then expands to 200 times its original size, can be used for electrocorticography monitoring.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A biodegradable and self-deployable electronic tent electrode for brain cortex interfacing\",\"authors\":\"Jae-Young Bae, Gyeong-Seok Hwang, Young-Seo Kim, Jooik Jeon, Minseong Chae, Joon-Woo Kim, Sian Lee, Seongchan Kim, Soo-Hwan Lee, Sung-Geun Choi, Ju-Yong Lee, Jae-Hwan Lee, Kyung-Sub Kim, Joo-Hyeon Park, Woo-Jin Lee, Yu-Chan Kim, Kang-Sik Lee, Jeonghyun Kim, Hyojin Lee, Jung Keun Hyun, Ju-Young Kim, Seung-Kyun Kang\",\"doi\":\"10.1038/s41928-024-01216-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-density, large-area electronic interfaces are a key component of brain–computer interface technologies. However, current designs typically require patients to undergo invasive procedures, which can lead to various complications. Here, we report a biodegradable and self-deployable tent electrode for brain cortex interfacing. The system can be integrated with multiplexing arrays and a wireless module for near-field communication and data transfer. It can be programmably packaged and self-deployed using a syringe for minimally invasive delivery through a small hole. Following delivery, it can expand to cover an area around 200 times its initial size. The electrode also naturally decomposes within the body after use, minimizing the impact of subsequent removal surgery. Through in vivo demonstrations, we show that our cortical-interfacing platform can be used to stimulate large populations of cortical activities. A biodegradable electronic tent electrode array that can be inserted into the brain cortex using a syringe, where it then expands to 200 times its original size, can be used for electrocorticography monitoring.\",\"PeriodicalId\":19064,\"journal\":{\"name\":\"Nature Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":33.7000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41928-024-01216-x\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-024-01216-x","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A biodegradable and self-deployable electronic tent electrode for brain cortex interfacing
High-density, large-area electronic interfaces are a key component of brain–computer interface technologies. However, current designs typically require patients to undergo invasive procedures, which can lead to various complications. Here, we report a biodegradable and self-deployable tent electrode for brain cortex interfacing. The system can be integrated with multiplexing arrays and a wireless module for near-field communication and data transfer. It can be programmably packaged and self-deployed using a syringe for minimally invasive delivery through a small hole. Following delivery, it can expand to cover an area around 200 times its initial size. The electrode also naturally decomposes within the body after use, minimizing the impact of subsequent removal surgery. Through in vivo demonstrations, we show that our cortical-interfacing platform can be used to stimulate large populations of cortical activities. A biodegradable electronic tent electrode array that can be inserted into the brain cortex using a syringe, where it then expands to 200 times its original size, can be used for electrocorticography monitoring.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.