Can Zhang, Xinlong Chen, Wang Wan, Ganxiong Liu, Quan Nie, Fangzhou Yang, Xueyang Li, Sa Li, Yunhui Huang and Chao Wang
{"title":"用于非破坏性、热安全和持续补充锂的空气稳定锂砂电流收集器","authors":"Can Zhang, Xinlong Chen, Wang Wan, Ganxiong Liu, Quan Nie, Fangzhou Yang, Xueyang Li, Sa Li, Yunhui Huang and Chao Wang","doi":"10.1039/D4EE02522A","DOIUrl":null,"url":null,"abstract":"<p >Contact prelithiation for anodes is a promising strategy to compensate for active lithium loss due to solid-state interface formation. However, existing research has predominantly focused on lithium thinning, neglecting issues of low lithium utilization and side reactions associated with lithium purification. Residues on the electrode surface can provoke additional side reactions, exacerbating cycling instability. Moreover, the thermal effects during contact prelithiation raise significant safety concerns for practical applications and remain understudied. To address surface issues, the lithium inventory was repositioned beneath the electrode using a lithiable current collector, sandwiching LiAg foil between two Cu foils (CLC). A 16 μm-thick CLC embedded with 5 μm LiAg was fabricated through a rolling process, while Cu foils underwent deformation, creating microholes during the thinning process. These microholes facilitate the sustained release of Li<small><sup>+</sup></small> from CLC, thus mitigating Li plating without additional anode materials. The gradual release of Li<small><sup>+</sup></small> also suppresses thermal runaway and electrode deformation, especially for Si anodes. Moreover, the CLC demonstrates excellent air stability, making it suitable as a current collector. The continuous electron pathway in CLC ensures a high lithium utilization of 97%. When integrated into LFP||Gr full cells, CLC enhances capacity retention from 80% to 96% after 400 cycles.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 18","pages":" 6766-6778"},"PeriodicalIF":30.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Air-stable lithium-sandwiched current collector for non-destructive, thermally safe, and sustained supplementary lithiation†\",\"authors\":\"Can Zhang, Xinlong Chen, Wang Wan, Ganxiong Liu, Quan Nie, Fangzhou Yang, Xueyang Li, Sa Li, Yunhui Huang and Chao Wang\",\"doi\":\"10.1039/D4EE02522A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Contact prelithiation for anodes is a promising strategy to compensate for active lithium loss due to solid-state interface formation. However, existing research has predominantly focused on lithium thinning, neglecting issues of low lithium utilization and side reactions associated with lithium purification. Residues on the electrode surface can provoke additional side reactions, exacerbating cycling instability. Moreover, the thermal effects during contact prelithiation raise significant safety concerns for practical applications and remain understudied. To address surface issues, the lithium inventory was repositioned beneath the electrode using a lithiable current collector, sandwiching LiAg foil between two Cu foils (CLC). A 16 μm-thick CLC embedded with 5 μm LiAg was fabricated through a rolling process, while Cu foils underwent deformation, creating microholes during the thinning process. These microholes facilitate the sustained release of Li<small><sup>+</sup></small> from CLC, thus mitigating Li plating without additional anode materials. The gradual release of Li<small><sup>+</sup></small> also suppresses thermal runaway and electrode deformation, especially for Si anodes. Moreover, the CLC demonstrates excellent air stability, making it suitable as a current collector. The continuous electron pathway in CLC ensures a high lithium utilization of 97%. When integrated into LFP||Gr full cells, CLC enhances capacity retention from 80% to 96% after 400 cycles.</p>\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\" 18\",\"pages\":\" 6766-6778\"},\"PeriodicalIF\":30.8000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ee/d4ee02522a\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ee/d4ee02522a","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Air-stable lithium-sandwiched current collector for non-destructive, thermally safe, and sustained supplementary lithiation†
Contact prelithiation for anodes is a promising strategy to compensate for active lithium loss due to solid-state interface formation. However, existing research has predominantly focused on lithium thinning, neglecting issues of low lithium utilization and side reactions associated with lithium purification. Residues on the electrode surface can provoke additional side reactions, exacerbating cycling instability. Moreover, the thermal effects during contact prelithiation raise significant safety concerns for practical applications and remain understudied. To address surface issues, the lithium inventory was repositioned beneath the electrode using a lithiable current collector, sandwiching LiAg foil between two Cu foils (CLC). A 16 μm-thick CLC embedded with 5 μm LiAg was fabricated through a rolling process, while Cu foils underwent deformation, creating microholes during the thinning process. These microholes facilitate the sustained release of Li+ from CLC, thus mitigating Li plating without additional anode materials. The gradual release of Li+ also suppresses thermal runaway and electrode deformation, especially for Si anodes. Moreover, the CLC demonstrates excellent air stability, making it suitable as a current collector. The continuous electron pathway in CLC ensures a high lithium utilization of 97%. When integrated into LFP||Gr full cells, CLC enhances capacity retention from 80% to 96% after 400 cycles.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).