利用监督分类法从光学相干断层扫描图像中对中耳炎相关细菌生物膜进行基于纹理的分类。

IF 2 3区 物理与天体物理 Q3 BIOCHEMICAL RESEARCH METHODS
Farzana R. Zaki, Guillermo L. Monroy, Jindou Shi, Kavya Sudhir, Stephen A. Boppart
{"title":"利用监督分类法从光学相干断层扫描图像中对中耳炎相关细菌生物膜进行基于纹理的分类。","authors":"Farzana R. Zaki,&nbsp;Guillermo L. Monroy,&nbsp;Jindou Shi,&nbsp;Kavya Sudhir,&nbsp;Stephen A. Boppart","doi":"10.1002/jbio.202400075","DOIUrl":null,"url":null,"abstract":"<p>Otitis media (OM), a highly prevalent inflammatory middle-ear disease in children worldwide, is commonly caused by an infection, and can lead to antibiotic-resistant bacterial biofilms in recurrent/chronic OM cases. A biofilm related to OM typically contains one or multiple bacterial species. OCT has been used clinically to visualize the presence of bacterial biofilms in the middle ear. This study used OCT to compare microstructural image texture features from bacterial biofilms. The proposed method applied supervised machine-learning-based frameworks (SVM, random forest, and XGBoost) to classify multiple species bacterial biofilms from in vitro cultures and clinically-obtained in vivo images from human subjects. Our findings show that optimized SVM-RBF and XGBoost classifiers achieved more than 95% of AUC, detecting each biofilm class. These results demonstrate the potential for differentiating OM-causing bacterial biofilms through texture analysis of OCT images and a machine-learning framework, offering valuable insights for real-time in vivo characterization of ear infections.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464188/pdf/","citationCount":"0","resultStr":"{\"title\":\"Texture-based speciation of otitis media-related bacterial biofilms from optical coherence tomography images using supervised classification\",\"authors\":\"Farzana R. Zaki,&nbsp;Guillermo L. Monroy,&nbsp;Jindou Shi,&nbsp;Kavya Sudhir,&nbsp;Stephen A. Boppart\",\"doi\":\"10.1002/jbio.202400075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Otitis media (OM), a highly prevalent inflammatory middle-ear disease in children worldwide, is commonly caused by an infection, and can lead to antibiotic-resistant bacterial biofilms in recurrent/chronic OM cases. A biofilm related to OM typically contains one or multiple bacterial species. OCT has been used clinically to visualize the presence of bacterial biofilms in the middle ear. This study used OCT to compare microstructural image texture features from bacterial biofilms. The proposed method applied supervised machine-learning-based frameworks (SVM, random forest, and XGBoost) to classify multiple species bacterial biofilms from in vitro cultures and clinically-obtained in vivo images from human subjects. Our findings show that optimized SVM-RBF and XGBoost classifiers achieved more than 95% of AUC, detecting each biofilm class. These results demonstrate the potential for differentiating OM-causing bacterial biofilms through texture analysis of OCT images and a machine-learning framework, offering valuable insights for real-time in vivo characterization of ear infections.</p>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464188/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400075\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400075","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

中耳炎(OM)是全球儿童高发的一种中耳炎性疾病,通常由感染引起,在复发性/慢性中耳炎病例中可导致抗生素耐药细菌生物膜。与 OM 相关的生物膜通常包含一种或多种细菌。OCT 已被临床用于观察中耳是否存在细菌生物膜。本研究使用 OCT 比较细菌生物膜的微结构图像纹理特征。所提出的方法应用了基于机器学习的监督框架(SVM、随机森林和 XGBoost),对体外培养和临床获得的人体活体图像中的多种细菌生物膜进行分类。我们的研究结果表明,经过优化的 SVM-RBF 和 XGBoost 分类器的 AUC 超过了 95%,能检测出每一类生物膜。这些结果证明了通过对 OCT 图像的纹理分析和机器学习框架来区分 OM 致病细菌生物膜的潜力,为耳部感染的实时活体特征描述提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Texture-based speciation of otitis media-related bacterial biofilms from optical coherence tomography images using supervised classification

Texture-based speciation of otitis media-related bacterial biofilms from optical coherence tomography images using supervised classification

Otitis media (OM), a highly prevalent inflammatory middle-ear disease in children worldwide, is commonly caused by an infection, and can lead to antibiotic-resistant bacterial biofilms in recurrent/chronic OM cases. A biofilm related to OM typically contains one or multiple bacterial species. OCT has been used clinically to visualize the presence of bacterial biofilms in the middle ear. This study used OCT to compare microstructural image texture features from bacterial biofilms. The proposed method applied supervised machine-learning-based frameworks (SVM, random forest, and XGBoost) to classify multiple species bacterial biofilms from in vitro cultures and clinically-obtained in vivo images from human subjects. Our findings show that optimized SVM-RBF and XGBoost classifiers achieved more than 95% of AUC, detecting each biofilm class. These results demonstrate the potential for differentiating OM-causing bacterial biofilms through texture analysis of OCT images and a machine-learning framework, offering valuable insights for real-time in vivo characterization of ear infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biophotonics
Journal of Biophotonics 生物-生化研究方法
CiteScore
5.70
自引率
7.10%
发文量
248
审稿时长
1 months
期刊介绍: The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信