{"title":"自适应平台试验中的非同期对照分析:分离随机和非随机信息。","authors":"Ian C. Marschner, I. Manjula Schou","doi":"10.1002/bimj.202300334","DOIUrl":null,"url":null,"abstract":"<p>Adaptive platform trials allow treatments to be added or dropped during the study, meaning that the control arm may be active for longer than the experimental arms. This leads to nonconcurrent controls, which provide nonrandomized information that may increase efficiency but may introduce bias from temporal confounding and other factors. Various methods have been proposed to control confounding from nonconcurrent controls, based on adjusting for time period. We demonstrate that time adjustment is insufficient to prevent bias in some circumstances where nonconcurrent controls are present in adaptive platform trials, and we propose a more general analytical framework that accounts for nonconcurrent controls in such circumstances. We begin by defining nonconcurrent controls using the concept of a concurrently randomized cohort, which is a subgroup of participants all subject to the same randomized design. We then use cohort adjustment rather than time adjustment. Due to flexibilities in platform trials, more than one randomized design may be in force at any time, meaning that cohort-adjusted and time-adjusted analyses may be quite different. Using simulation studies, we demonstrate that time-adjusted analyses may be biased while cohort-adjusted analyses remove this bias. We also demonstrate that the cohort-adjusted analysis may be interpreted as a synthesis of randomized and indirect comparisons analogous to mixed treatment comparisons in network meta-analysis. This allows the use of network meta-analysis methodology to separate the randomized and nonrandomized components and to assess their consistency. Whenever nonconcurrent controls are used in platform trials, the separate randomized and indirect contributions to the treatment effect should be presented.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300334","citationCount":"0","resultStr":"{\"title\":\"Analysis of Nonconcurrent Controls in Adaptive Platform Trials: Separating Randomized and Nonrandomized Information\",\"authors\":\"Ian C. Marschner, I. Manjula Schou\",\"doi\":\"10.1002/bimj.202300334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Adaptive platform trials allow treatments to be added or dropped during the study, meaning that the control arm may be active for longer than the experimental arms. This leads to nonconcurrent controls, which provide nonrandomized information that may increase efficiency but may introduce bias from temporal confounding and other factors. Various methods have been proposed to control confounding from nonconcurrent controls, based on adjusting for time period. We demonstrate that time adjustment is insufficient to prevent bias in some circumstances where nonconcurrent controls are present in adaptive platform trials, and we propose a more general analytical framework that accounts for nonconcurrent controls in such circumstances. We begin by defining nonconcurrent controls using the concept of a concurrently randomized cohort, which is a subgroup of participants all subject to the same randomized design. We then use cohort adjustment rather than time adjustment. Due to flexibilities in platform trials, more than one randomized design may be in force at any time, meaning that cohort-adjusted and time-adjusted analyses may be quite different. Using simulation studies, we demonstrate that time-adjusted analyses may be biased while cohort-adjusted analyses remove this bias. We also demonstrate that the cohort-adjusted analysis may be interpreted as a synthesis of randomized and indirect comparisons analogous to mixed treatment comparisons in network meta-analysis. This allows the use of network meta-analysis methodology to separate the randomized and nonrandomized components and to assess their consistency. Whenever nonconcurrent controls are used in platform trials, the separate randomized and indirect contributions to the treatment effect should be presented.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300334\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300334\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300334","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Analysis of Nonconcurrent Controls in Adaptive Platform Trials: Separating Randomized and Nonrandomized Information
Adaptive platform trials allow treatments to be added or dropped during the study, meaning that the control arm may be active for longer than the experimental arms. This leads to nonconcurrent controls, which provide nonrandomized information that may increase efficiency but may introduce bias from temporal confounding and other factors. Various methods have been proposed to control confounding from nonconcurrent controls, based on adjusting for time period. We demonstrate that time adjustment is insufficient to prevent bias in some circumstances where nonconcurrent controls are present in adaptive platform trials, and we propose a more general analytical framework that accounts for nonconcurrent controls in such circumstances. We begin by defining nonconcurrent controls using the concept of a concurrently randomized cohort, which is a subgroup of participants all subject to the same randomized design. We then use cohort adjustment rather than time adjustment. Due to flexibilities in platform trials, more than one randomized design may be in force at any time, meaning that cohort-adjusted and time-adjusted analyses may be quite different. Using simulation studies, we demonstrate that time-adjusted analyses may be biased while cohort-adjusted analyses remove this bias. We also demonstrate that the cohort-adjusted analysis may be interpreted as a synthesis of randomized and indirect comparisons analogous to mixed treatment comparisons in network meta-analysis. This allows the use of network meta-analysis methodology to separate the randomized and nonrandomized components and to assess their consistency. Whenever nonconcurrent controls are used in platform trials, the separate randomized and indirect contributions to the treatment effect should be presented.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.