{"title":"通过促进拟南芥中 HSFA2 的转录,抑制 SMXL4 和 SMXL5 可增强其耐热性。","authors":"Yajie Pan, Bofan Yu, Xin Wei, Yuping Qiu, Xin Mao, Yuelin Liu, Wei Yan, Qianyan Linghu, Wenyang Li, Hongwei Guo, Zhonghua Tang","doi":"10.1093/plcell/koae224","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying the essential factors and underlying mechanisms regulating plant heat stress (HS) responses is crucial for mitigating the threat posed by HS on plant growth, development, distribution, and productivity. In this study, we found that the Arabidopsis (Arabidopsis thaliana) super-killer2 (ski2) dicer-like4 (dcl4) mutant, characterized by RNA processing defects and the accumulation of abundant 22-nt small interfering RNAs derived from protein-coding transcripts, displayed significantly increased expression levels of HS-responsive genes and enhanced thermotolerance. These traits primarily resulted from the suppression of SMAX1-LIKE4 (SMXL4) and SMXL5, which encode 2 putative transcriptional regulators that belong to the SMXL protein family. While smxl4 and smxl5 single mutants were similar to wild type, the smxl4 smxl5 double mutant displayed substantially heightened seedling thermotolerance. Further investigation demonstrated that SMXL4 and SMXL5 repressed the transcription of HEAT-SHOCK TRANSCRIPTION FACTOR A2 (HSFA2), encoding a master regulator of thermotolerance, independently of ethylene-response factor-associated amphiphilic repression motifs. Moreover, SMXL4 and SMXL5 interacted with HSFA1d and HSFA1e, central regulators sensing and transducing HS stimuli, and antagonistically affected their transactivation activity. In addition, HSFA2 directly bound to the SMXL4 and SMXL5 promoters, inducing their expression during recovery from HS. Collectively, our findings elucidate the role of the SMXL4/SMXL5-HSFA2 regulatory module in orchestrating plant thermotolerance under HS.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":null,"pages":null},"PeriodicalIF":10.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449109/pdf/","citationCount":"0","resultStr":"{\"title\":\"Suppression of SMXL4 and SMXL5 confers enhanced thermotolerance through promoting HSFA2 transcription in Arabidopsis.\",\"authors\":\"Yajie Pan, Bofan Yu, Xin Wei, Yuping Qiu, Xin Mao, Yuelin Liu, Wei Yan, Qianyan Linghu, Wenyang Li, Hongwei Guo, Zhonghua Tang\",\"doi\":\"10.1093/plcell/koae224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identifying the essential factors and underlying mechanisms regulating plant heat stress (HS) responses is crucial for mitigating the threat posed by HS on plant growth, development, distribution, and productivity. In this study, we found that the Arabidopsis (Arabidopsis thaliana) super-killer2 (ski2) dicer-like4 (dcl4) mutant, characterized by RNA processing defects and the accumulation of abundant 22-nt small interfering RNAs derived from protein-coding transcripts, displayed significantly increased expression levels of HS-responsive genes and enhanced thermotolerance. These traits primarily resulted from the suppression of SMAX1-LIKE4 (SMXL4) and SMXL5, which encode 2 putative transcriptional regulators that belong to the SMXL protein family. While smxl4 and smxl5 single mutants were similar to wild type, the smxl4 smxl5 double mutant displayed substantially heightened seedling thermotolerance. Further investigation demonstrated that SMXL4 and SMXL5 repressed the transcription of HEAT-SHOCK TRANSCRIPTION FACTOR A2 (HSFA2), encoding a master regulator of thermotolerance, independently of ethylene-response factor-associated amphiphilic repression motifs. Moreover, SMXL4 and SMXL5 interacted with HSFA1d and HSFA1e, central regulators sensing and transducing HS stimuli, and antagonistically affected their transactivation activity. In addition, HSFA2 directly bound to the SMXL4 and SMXL5 promoters, inducing their expression during recovery from HS. Collectively, our findings elucidate the role of the SMXL4/SMXL5-HSFA2 regulatory module in orchestrating plant thermotolerance under HS.</p>\",\"PeriodicalId\":20186,\"journal\":{\"name\":\"Plant Cell\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449109/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plcell/koae224\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koae224","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Suppression of SMXL4 and SMXL5 confers enhanced thermotolerance through promoting HSFA2 transcription in Arabidopsis.
Identifying the essential factors and underlying mechanisms regulating plant heat stress (HS) responses is crucial for mitigating the threat posed by HS on plant growth, development, distribution, and productivity. In this study, we found that the Arabidopsis (Arabidopsis thaliana) super-killer2 (ski2) dicer-like4 (dcl4) mutant, characterized by RNA processing defects and the accumulation of abundant 22-nt small interfering RNAs derived from protein-coding transcripts, displayed significantly increased expression levels of HS-responsive genes and enhanced thermotolerance. These traits primarily resulted from the suppression of SMAX1-LIKE4 (SMXL4) and SMXL5, which encode 2 putative transcriptional regulators that belong to the SMXL protein family. While smxl4 and smxl5 single mutants were similar to wild type, the smxl4 smxl5 double mutant displayed substantially heightened seedling thermotolerance. Further investigation demonstrated that SMXL4 and SMXL5 repressed the transcription of HEAT-SHOCK TRANSCRIPTION FACTOR A2 (HSFA2), encoding a master regulator of thermotolerance, independently of ethylene-response factor-associated amphiphilic repression motifs. Moreover, SMXL4 and SMXL5 interacted with HSFA1d and HSFA1e, central regulators sensing and transducing HS stimuli, and antagonistically affected their transactivation activity. In addition, HSFA2 directly bound to the SMXL4 and SMXL5 promoters, inducing their expression during recovery from HS. Collectively, our findings elucidate the role of the SMXL4/SMXL5-HSFA2 regulatory module in orchestrating plant thermotolerance under HS.
期刊介绍:
Title: Plant Cell
Publisher:
Published monthly by the American Society of Plant Biologists (ASPB)
Produced by Sheridan Journal Services, Waterbury, VT
History and Impact:
Established in 1989
Within three years of publication, ranked first in impact among journals in plant sciences
Maintains high standard of excellence
Scope:
Publishes novel research of special significance in plant biology
Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution
Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience
Tenets:
Publish the most exciting, cutting-edge research in plant cellular and molecular biology
Provide rapid turnaround time for reviewing and publishing research papers
Ensure highest quality reproduction of data
Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.