探索酵母生物多样性和工艺条件,优化乙二醇转化为乙醇酸的过程。

IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Vittorio Giorgio Senatore, Riccardo Milanesi, Fiorella Masotti, Letizia Maestroni, Stefania Pagliari, Ciro Cannavacciuolo, Luca Campone, Immacolata Serra, Paola Branduardi
{"title":"探索酵母生物多样性和工艺条件,优化乙二醇转化为乙醇酸的过程。","authors":"Vittorio Giorgio Senatore, Riccardo Milanesi, Fiorella Masotti, Letizia Maestroni, Stefania Pagliari, Ciro Cannavacciuolo, Luca Campone, Immacolata Serra, Paola Branduardi","doi":"10.1093/femsyr/foae024","DOIUrl":null,"url":null,"abstract":"<p><p>Plastics have become an indispensable material in many fields of human activities, with production increasing every year; however, most of the plastic waste is still incinerated or landfilled, and only 10% of the new plastic is recycled even once. Among all plastics, polyethylene terephthalate (PET) is the most produced polyester worldwide; ethylene glycol (EG) is one of the two monomers released by the biorecycling of PET. While most research focuses on bacterial EG metabolism, this work reports the ability of Saccharomyces cerevisiae and nine other common laboratory yeast species not only to consume EG, but also to produce glycolic acid (GA) as the main by-product. A two-step bioconversion of EG to GA by S. cerevisiae was optimized by a design of experiment approach, obtaining 4.51 ± 0.12 g l-1 of GA with a conversion of 94.25 ± 1.74% from 6.21 ± 0.04 g l-1 EG. To improve the titer, screening of yeast biodiversity identified Scheffersomyces stipitis as the best GA producer, obtaining 23.79 ± 1.19 g l-1 of GA (yield 76.68%) in bioreactor fermentation, with a single-step bioprocess. Our findings contribute in laying the ground for EG upcycling strategies with yeasts.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344169/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring yeast biodiversity and process conditions for optimizing ethylene glycol conversion into glycolic acid.\",\"authors\":\"Vittorio Giorgio Senatore, Riccardo Milanesi, Fiorella Masotti, Letizia Maestroni, Stefania Pagliari, Ciro Cannavacciuolo, Luca Campone, Immacolata Serra, Paola Branduardi\",\"doi\":\"10.1093/femsyr/foae024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plastics have become an indispensable material in many fields of human activities, with production increasing every year; however, most of the plastic waste is still incinerated or landfilled, and only 10% of the new plastic is recycled even once. Among all plastics, polyethylene terephthalate (PET) is the most produced polyester worldwide; ethylene glycol (EG) is one of the two monomers released by the biorecycling of PET. While most research focuses on bacterial EG metabolism, this work reports the ability of Saccharomyces cerevisiae and nine other common laboratory yeast species not only to consume EG, but also to produce glycolic acid (GA) as the main by-product. A two-step bioconversion of EG to GA by S. cerevisiae was optimized by a design of experiment approach, obtaining 4.51 ± 0.12 g l-1 of GA with a conversion of 94.25 ± 1.74% from 6.21 ± 0.04 g l-1 EG. To improve the titer, screening of yeast biodiversity identified Scheffersomyces stipitis as the best GA producer, obtaining 23.79 ± 1.19 g l-1 of GA (yield 76.68%) in bioreactor fermentation, with a single-step bioprocess. Our findings contribute in laying the ground for EG upcycling strategies with yeasts.</p>\",\"PeriodicalId\":12290,\"journal\":{\"name\":\"FEMS yeast research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344169/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS yeast research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsyr/foae024\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foae024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

塑料已成为人类活动中许多领域不可或缺的材料,产量逐年增加;然而,大部分塑料垃圾仍被焚烧或填埋,只有 10%的新塑料被回收利用过一次。在所有塑料中,聚对苯二甲酸乙二醇酯(PET)是全球产量最大的聚酯;乙二醇(EG)是 PET 生物再循环过程中释放的两种单体之一。大多数研究都集中在细菌的乙二醇新陈代谢上,而这项工作报告了酿酒酵母和其他九种常见的实验室酵母不仅能消耗乙二醇,还能产生乙醇酸(GA)作为主要副产品。通过实验设计方法,对酿酒酵母将 EG 转化为 GA 的两步生物转化进行了优化,从 6.21 ± 0.04 g L-1 的 EG 中获得了 4.51 ± 0.12 g L-1 的 GA,转化率为 94.25 ± 1.74%。为了提高滴度,对酵母生物多样性进行了筛选,确定了 Scheffersomyces stipitis 是 GA 的最佳生产者,它在生物反应器发酵中获得了 23.79 ± 1.19 g L-1 的 GA(产量为 76.68%),采用的是单步生物工艺。我们的研究结果为利用酵母菌实现 EG 循环利用战略奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring yeast biodiversity and process conditions for optimizing ethylene glycol conversion into glycolic acid.

Plastics have become an indispensable material in many fields of human activities, with production increasing every year; however, most of the plastic waste is still incinerated or landfilled, and only 10% of the new plastic is recycled even once. Among all plastics, polyethylene terephthalate (PET) is the most produced polyester worldwide; ethylene glycol (EG) is one of the two monomers released by the biorecycling of PET. While most research focuses on bacterial EG metabolism, this work reports the ability of Saccharomyces cerevisiae and nine other common laboratory yeast species not only to consume EG, but also to produce glycolic acid (GA) as the main by-product. A two-step bioconversion of EG to GA by S. cerevisiae was optimized by a design of experiment approach, obtaining 4.51 ± 0.12 g l-1 of GA with a conversion of 94.25 ± 1.74% from 6.21 ± 0.04 g l-1 EG. To improve the titer, screening of yeast biodiversity identified Scheffersomyces stipitis as the best GA producer, obtaining 23.79 ± 1.19 g l-1 of GA (yield 76.68%) in bioreactor fermentation, with a single-step bioprocess. Our findings contribute in laying the ground for EG upcycling strategies with yeasts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEMS yeast research
FEMS yeast research 生物-生物工程与应用微生物
CiteScore
5.70
自引率
6.20%
发文量
54
审稿时长
1 months
期刊介绍: FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信