湿疹的局部消炎疗法:网络荟萃分析。

IF 8.8 2区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Stephanie J Lax, Eleanor Van Vogt, Bridget Candy, Lloyd Steele, Clare Reynolds, Beth Stuart, Roses Parker, Emma Axon, Amanda Roberts, Megan Doyle, Derek K Chu, Masaki Futamura, Miriam Santer, Hywel C Williams, Suzie Cro, Aaron M Drucker, Robert J Boyle
{"title":"湿疹的局部消炎疗法:网络荟萃分析。","authors":"Stephanie J Lax, Eleanor Van Vogt, Bridget Candy, Lloyd Steele, Clare Reynolds, Beth Stuart, Roses Parker, Emma Axon, Amanda Roberts, Megan Doyle, Derek K Chu, Masaki Futamura, Miriam Santer, Hywel C Williams, Suzie Cro, Aaron M Drucker, Robert J Boyle","doi":"10.1002/14651858.CD015064.pub2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Eczema (atopic dermatitis) is the most burdensome skin condition worldwide and cannot currently be prevented or cured. Topical anti-inflammatory treatments are used to control eczema symptoms, but there is uncertainty about the relative effectiveness and safety of different topical anti-inflammatory treatments.</p><p><strong>Objectives: </strong>To compare and rank the efficacy and safety of topical anti-inflammatory treatments for people with eczema using a network meta-analysis.</p><p><strong>Search methods: </strong>We searched the Cochrane Skin Specialised Register, CENTRAL, MEDLINE, Embase and trial registries on 29 June 2023, and checked the reference lists of included studies.</p><p><strong>Selection criteria: </strong>We included within-participant or between-participant randomised controlled trials (RCTs) in people of any age with eczema of any severity, but excluded trials in clinically infected eczema, seborrhoeic eczema, contact eczema, or hand eczema. We included topical anti-inflammatory treatments used for at least one week, compared with another anti-inflammatory treatment, no treatment, or vehicle/placebo. Vehicle is a 'carrier system' for an active pharmaceutical substance, which may also be used on its own as an emollient for dry skin. We excluded trials of topical antibiotics used alone, complementary therapies, emollients used alone, phototherapy, wet wraps, and systemic treatments.</p><p><strong>Data collection and analysis: </strong>We used standard Cochrane methods. Primary outcomes were patient-reported eczema symptoms, clinician-reported eczema signs and investigator global assessment. Secondary outcomes were health-related quality of life, long-term control of eczema, withdrawal from treatment/study, and local adverse effects (application-site reactions, pigmentation changes and skin thinning/atrophy were identified as important concerns through patient and public involvement). We used CINeMA to quantify our confidence in the evidence for each outcome.</p><p><strong>Main results: </strong>We included 291 studies involving 45,846 participants with the full spectrum of eczema severity, mainly conducted in high-income countries in secondary care settings. Most studies included adults, with only 31 studies limited to children aged < 12 years. Studies usually included male and female participants, multiple ethnic groups but predominantly white populations. Most studies were industry-funded (68%) or did not report their funding sources/details. Treatment duration and trial participation were a median of 21 and 28 days (ranging from 7 days to 5 years), respectively. Interventions used were topical corticosteroids (TCS) (172), topical calcineurin inhibitors (TCI) (134), phosphodiesterase-4 (PDE-4) inhibitors (55), janus kinase (JAK) inhibitors (30), aryl hydrocarbon receptor activators (10), or other topical agents (21). Comparators included vehicle (170) or other anti-inflammatory treatments. The risk of bias was high in 242 of the 272 (89.0%) trials contributing to data analyses, most commonly due to concerns about selective reporting. Network meta-analysis (NMA) was only possible for short-term outcomes. Patient-reported symptoms NMA of 40 trials (6482 participants) reporting patient-reported symptoms as a binary outcome ranked tacrolimus 0.1% (OR 6.27, 95% CI 1.19 to 32.98), potent TCS (OR 5.99, 95% CI 2.83 to 12.69), and ruxolitinib 1.5% (OR 5.64, 95% CI 1.26 to 25.25) as the most effective, all with low confidence. Mild TCS, roflumilast 0.15%, and crisaborole 2% were the least effective. Class-level sensitivity analysis found potent/very potent TCS had similar effectiveness to potent TCI and was more effective than mild TCI and PDE-4 inhibitors. NMA of 29 trials (3839 participants) reporting patient-reported symptoms as a continuous outcome ranked very potent TCS (SMD -1.99, 95% CI -3.25 to -0.73; low confidence) and tacrolimus 0.03% (SMD -1.57, 95% CI -2.42 to -0.72; moderate confidence) the highest. Direct information for tacrolimus 0.03% was based on one trial of 60 participants at high risk of bias. Roflumilast 0.15%, delgocitinib 0.25% or 0.5%, and tapinarof 1% were the least effective. Class-level sensitivity analysis found potent/very potent TCS had similar effectiveness to potent TCI and JAK inhibitors and mild/moderate TCS was less effective than mild TCI. A further 50 trials (9636 participants) reported patient-reported symptoms as a continuous outcome but could not be included in NMA. Clinician-reported signs NMA of 32 trials (4121 participants) reported clinician signs as a binary outcome and ranked potent TCS (OR 8.15, 95% CI 4.99, 13.57), tacrolimus 0.1% (OR 8.06, 95% CI 3.30, 19.67), ruxolitinib 1.5% (OR 7.72, 95% CI 4.92, 12.10), and delgocitinib 0.5% (OR 7.61, 95% CI 3.72, 15.58) as most effective, all with moderate confidence. Mild TCS, roflumilast 0.15%, crisaborole 2%, and tapinarof 1% were the least effective. Class-level sensitivity analysis found potent/very potent TCS more effective than potent TCI, mild TCI, JAK inhibitors, PDE-4 inhibitors; and mild TCS and PDE-4 inhibitors had similar effectiveness. NMA of 49 trials (5261 participants) reported clinician signs as a continuous outcome and ranked tacrolimus 0.03% (SMD -2.69, 95% CI -3.36, -2.02) and very potent TCS (SMD -1.87, 95% CI -2.69, -1.05) as most effective, both with moderate confidence; roflumilast 0.15%, difamilast 0.3% and tapinarof 1% were ranked as least effective. Direct information for tacrolimus 0.03% was based on one trial in 60 participants with a high risk of bias. For some sensitivity analyses, potent TCS, tacrolimus 0.1%, ruxolitinib 1.5%, delgocitinib 0.5% and delgocitinib 0.25% became some of the most effective treatments. Class-level analysis found potent/very potent TCS had similar effectiveness to potent TCI and JAK inhibitors, and moderate/mild TCS was more effective than mild TCI. A further 100 trials (22,814 participants) reported clinician signs as a continuous outcome but could not be included in NMA. Investigator Global Assessment NMA of 140 trials (23,383 participants) reported IGA as a binary outcome and ranked ruxolitinib 1.5% (OR 9.34, 95% CI 4.8, 18.18), delgocitinib 0.5% (OR 10.08, 95% CI 2.65, 38.37), delgocitinib 0.25% (OR 6.87, 95% CI 1.79, 26.33), very potent TCS (OR 8.34, 95% CI 4.73, 14.67), potent TCS (OR 5.00, 95% CI 3.80, 6.58), and tacrolimus 0.1% (OR 5.06, 95% CI 3.59, 7.13) as most effective, all with moderate confidence. Mild TCS, crisaborole 2%, pimecrolimus 1%, roflumilast 0.15%, difamilast 0.3% and 1%, and tacrolimus 0.03% were the least effective. In a sensitivity analysis of low risk of bias information (12 trials, 1639 participants), potent TCS, delgocitinib 0.5% and delgocitinib 0.25% were most effective, and pimecrolimus 1%, roflumilast 0.15%, difamilast 1% and difamilast 0.3% least effective. Class-level sensitivity analysis found potent/very potent TCS had similar effectiveness to potent TCI and JAK inhibitors and were more effective than PDE-4 inhibitors; mild/moderate TCS were less effective than potent TCI and had similar effectiveness to mild TCI. Longer-term outcomes over 6 to 12 months showed a possible increase in effectiveness for pimecrolimus 1% versus vehicle (4 trials, 2218 participants) in a pairwise meta-analysis, and greater treatment success with mild/moderate TCS than pimecrolimus 1% (based on 1 trial of 2045 participants). Local adverse effects NMA of 83 trials (18,992 participants, 2424 events) reporting application-site reactions ranked tacrolimus 0.1% (OR 2.2, 95% CI 1.53, 3.17; moderate confidence), crisaborole 2% (OR 2.12, 95% CI 1.18, 3.81; high confidence), tacrolimus 0.03% (OR 1.51, 95%CI 1.10, 2.09; low confidence), and pimecrolimus 1% (OR 1.44, 95% CI 1.01, 2.04; low confidence) as most likely to cause site reactions. Very potent, potent, moderate, and mild TCS were least likely to cause site reactions. NMA of eight trials (1786 participants, 3 events) reporting pigmentation changes found no evidence for increased pigmentation changes with TCS and crisaborole 2%, with low confidence for mild, moderate or potent TCS and moderate confidence for crisaborole 2%. NMA of 25 trials (3691 participants, 36 events) reporting skin thinning found no evidence for increased skin thinning with short-term (median 3 weeks, range 1-16 weeks) use of mild TCS (OR 0.72, 95% CI 0.12, 4.31), moderate TCS (OR 0.91, 95% CI 0.16, 5.33), potent TCS (OR 0.96, 95% CI 0.21, 4.43) or very potent TCS (OR 0.88, 95% CI 0.31, 2.49), all with low confidence. Longer-term outcomes over 6 to 60 months showed increased skin thinning with mild to potent TCS versus TCI (3 trials, 4069 participants, 6 events with TCS).</p><p><strong>Authors' conclusions: </strong>Potent TCS, JAK inhibitors and tacrolimus 0.1% were consistently ranked as amongst the most effective topical anti-inflammatory treatments for eczema and PDE-4 inhibitors as amongst the least effective. Mild TCS and tapinarof 1% were ranked amongst the least effective treatments in three of five efficacy networks. TCI and crisaborole 2% were ranked most likely to cause local application-site reactions and TCS least likely. We found no evidence for increased skin thinning with short-term TCS but an increase with longer-term TCS.</p>","PeriodicalId":10473,"journal":{"name":"Cochrane Database of Systematic Reviews","volume":"8 ","pages":"CD015064"},"PeriodicalIF":8.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301992/pdf/","citationCount":"0","resultStr":"{\"title\":\"Topical anti-inflammatory treatments for eczema: network meta-analysis.\",\"authors\":\"Stephanie J Lax, Eleanor Van Vogt, Bridget Candy, Lloyd Steele, Clare Reynolds, Beth Stuart, Roses Parker, Emma Axon, Amanda Roberts, Megan Doyle, Derek K Chu, Masaki Futamura, Miriam Santer, Hywel C Williams, Suzie Cro, Aaron M Drucker, Robert J Boyle\",\"doi\":\"10.1002/14651858.CD015064.pub2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Eczema (atopic dermatitis) is the most burdensome skin condition worldwide and cannot currently be prevented or cured. Topical anti-inflammatory treatments are used to control eczema symptoms, but there is uncertainty about the relative effectiveness and safety of different topical anti-inflammatory treatments.</p><p><strong>Objectives: </strong>To compare and rank the efficacy and safety of topical anti-inflammatory treatments for people with eczema using a network meta-analysis.</p><p><strong>Search methods: </strong>We searched the Cochrane Skin Specialised Register, CENTRAL, MEDLINE, Embase and trial registries on 29 June 2023, and checked the reference lists of included studies.</p><p><strong>Selection criteria: </strong>We included within-participant or between-participant randomised controlled trials (RCTs) in people of any age with eczema of any severity, but excluded trials in clinically infected eczema, seborrhoeic eczema, contact eczema, or hand eczema. We included topical anti-inflammatory treatments used for at least one week, compared with another anti-inflammatory treatment, no treatment, or vehicle/placebo. Vehicle is a 'carrier system' for an active pharmaceutical substance, which may also be used on its own as an emollient for dry skin. We excluded trials of topical antibiotics used alone, complementary therapies, emollients used alone, phototherapy, wet wraps, and systemic treatments.</p><p><strong>Data collection and analysis: </strong>We used standard Cochrane methods. Primary outcomes were patient-reported eczema symptoms, clinician-reported eczema signs and investigator global assessment. Secondary outcomes were health-related quality of life, long-term control of eczema, withdrawal from treatment/study, and local adverse effects (application-site reactions, pigmentation changes and skin thinning/atrophy were identified as important concerns through patient and public involvement). We used CINeMA to quantify our confidence in the evidence for each outcome.</p><p><strong>Main results: </strong>We included 291 studies involving 45,846 participants with the full spectrum of eczema severity, mainly conducted in high-income countries in secondary care settings. Most studies included adults, with only 31 studies limited to children aged < 12 years. Studies usually included male and female participants, multiple ethnic groups but predominantly white populations. Most studies were industry-funded (68%) or did not report their funding sources/details. Treatment duration and trial participation were a median of 21 and 28 days (ranging from 7 days to 5 years), respectively. Interventions used were topical corticosteroids (TCS) (172), topical calcineurin inhibitors (TCI) (134), phosphodiesterase-4 (PDE-4) inhibitors (55), janus kinase (JAK) inhibitors (30), aryl hydrocarbon receptor activators (10), or other topical agents (21). Comparators included vehicle (170) or other anti-inflammatory treatments. The risk of bias was high in 242 of the 272 (89.0%) trials contributing to data analyses, most commonly due to concerns about selective reporting. Network meta-analysis (NMA) was only possible for short-term outcomes. Patient-reported symptoms NMA of 40 trials (6482 participants) reporting patient-reported symptoms as a binary outcome ranked tacrolimus 0.1% (OR 6.27, 95% CI 1.19 to 32.98), potent TCS (OR 5.99, 95% CI 2.83 to 12.69), and ruxolitinib 1.5% (OR 5.64, 95% CI 1.26 to 25.25) as the most effective, all with low confidence. Mild TCS, roflumilast 0.15%, and crisaborole 2% were the least effective. Class-level sensitivity analysis found potent/very potent TCS had similar effectiveness to potent TCI and was more effective than mild TCI and PDE-4 inhibitors. NMA of 29 trials (3839 participants) reporting patient-reported symptoms as a continuous outcome ranked very potent TCS (SMD -1.99, 95% CI -3.25 to -0.73; low confidence) and tacrolimus 0.03% (SMD -1.57, 95% CI -2.42 to -0.72; moderate confidence) the highest. Direct information for tacrolimus 0.03% was based on one trial of 60 participants at high risk of bias. Roflumilast 0.15%, delgocitinib 0.25% or 0.5%, and tapinarof 1% were the least effective. Class-level sensitivity analysis found potent/very potent TCS had similar effectiveness to potent TCI and JAK inhibitors and mild/moderate TCS was less effective than mild TCI. A further 50 trials (9636 participants) reported patient-reported symptoms as a continuous outcome but could not be included in NMA. Clinician-reported signs NMA of 32 trials (4121 participants) reported clinician signs as a binary outcome and ranked potent TCS (OR 8.15, 95% CI 4.99, 13.57), tacrolimus 0.1% (OR 8.06, 95% CI 3.30, 19.67), ruxolitinib 1.5% (OR 7.72, 95% CI 4.92, 12.10), and delgocitinib 0.5% (OR 7.61, 95% CI 3.72, 15.58) as most effective, all with moderate confidence. Mild TCS, roflumilast 0.15%, crisaborole 2%, and tapinarof 1% were the least effective. Class-level sensitivity analysis found potent/very potent TCS more effective than potent TCI, mild TCI, JAK inhibitors, PDE-4 inhibitors; and mild TCS and PDE-4 inhibitors had similar effectiveness. NMA of 49 trials (5261 participants) reported clinician signs as a continuous outcome and ranked tacrolimus 0.03% (SMD -2.69, 95% CI -3.36, -2.02) and very potent TCS (SMD -1.87, 95% CI -2.69, -1.05) as most effective, both with moderate confidence; roflumilast 0.15%, difamilast 0.3% and tapinarof 1% were ranked as least effective. Direct information for tacrolimus 0.03% was based on one trial in 60 participants with a high risk of bias. For some sensitivity analyses, potent TCS, tacrolimus 0.1%, ruxolitinib 1.5%, delgocitinib 0.5% and delgocitinib 0.25% became some of the most effective treatments. Class-level analysis found potent/very potent TCS had similar effectiveness to potent TCI and JAK inhibitors, and moderate/mild TCS was more effective than mild TCI. A further 100 trials (22,814 participants) reported clinician signs as a continuous outcome but could not be included in NMA. Investigator Global Assessment NMA of 140 trials (23,383 participants) reported IGA as a binary outcome and ranked ruxolitinib 1.5% (OR 9.34, 95% CI 4.8, 18.18), delgocitinib 0.5% (OR 10.08, 95% CI 2.65, 38.37), delgocitinib 0.25% (OR 6.87, 95% CI 1.79, 26.33), very potent TCS (OR 8.34, 95% CI 4.73, 14.67), potent TCS (OR 5.00, 95% CI 3.80, 6.58), and tacrolimus 0.1% (OR 5.06, 95% CI 3.59, 7.13) as most effective, all with moderate confidence. Mild TCS, crisaborole 2%, pimecrolimus 1%, roflumilast 0.15%, difamilast 0.3% and 1%, and tacrolimus 0.03% were the least effective. In a sensitivity analysis of low risk of bias information (12 trials, 1639 participants), potent TCS, delgocitinib 0.5% and delgocitinib 0.25% were most effective, and pimecrolimus 1%, roflumilast 0.15%, difamilast 1% and difamilast 0.3% least effective. Class-level sensitivity analysis found potent/very potent TCS had similar effectiveness to potent TCI and JAK inhibitors and were more effective than PDE-4 inhibitors; mild/moderate TCS were less effective than potent TCI and had similar effectiveness to mild TCI. Longer-term outcomes over 6 to 12 months showed a possible increase in effectiveness for pimecrolimus 1% versus vehicle (4 trials, 2218 participants) in a pairwise meta-analysis, and greater treatment success with mild/moderate TCS than pimecrolimus 1% (based on 1 trial of 2045 participants). Local adverse effects NMA of 83 trials (18,992 participants, 2424 events) reporting application-site reactions ranked tacrolimus 0.1% (OR 2.2, 95% CI 1.53, 3.17; moderate confidence), crisaborole 2% (OR 2.12, 95% CI 1.18, 3.81; high confidence), tacrolimus 0.03% (OR 1.51, 95%CI 1.10, 2.09; low confidence), and pimecrolimus 1% (OR 1.44, 95% CI 1.01, 2.04; low confidence) as most likely to cause site reactions. Very potent, potent, moderate, and mild TCS were least likely to cause site reactions. NMA of eight trials (1786 participants, 3 events) reporting pigmentation changes found no evidence for increased pigmentation changes with TCS and crisaborole 2%, with low confidence for mild, moderate or potent TCS and moderate confidence for crisaborole 2%. NMA of 25 trials (3691 participants, 36 events) reporting skin thinning found no evidence for increased skin thinning with short-term (median 3 weeks, range 1-16 weeks) use of mild TCS (OR 0.72, 95% CI 0.12, 4.31), moderate TCS (OR 0.91, 95% CI 0.16, 5.33), potent TCS (OR 0.96, 95% CI 0.21, 4.43) or very potent TCS (OR 0.88, 95% CI 0.31, 2.49), all with low confidence. Longer-term outcomes over 6 to 60 months showed increased skin thinning with mild to potent TCS versus TCI (3 trials, 4069 participants, 6 events with TCS).</p><p><strong>Authors' conclusions: </strong>Potent TCS, JAK inhibitors and tacrolimus 0.1% were consistently ranked as amongst the most effective topical anti-inflammatory treatments for eczema and PDE-4 inhibitors as amongst the least effective. Mild TCS and tapinarof 1% were ranked amongst the least effective treatments in three of five efficacy networks. TCI and crisaborole 2% were ranked most likely to cause local application-site reactions and TCS least likely. We found no evidence for increased skin thinning with short-term TCS but an increase with longer-term TCS.</p>\",\"PeriodicalId\":10473,\"journal\":{\"name\":\"Cochrane Database of Systematic Reviews\",\"volume\":\"8 \",\"pages\":\"CD015064\"},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301992/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cochrane Database of Systematic Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/14651858.CD015064.pub2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cochrane Database of Systematic Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/14651858.CD015064.pub2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

分类敏感性分析发现,强效/特效 TCS 比强效 TCI、轻度 TCI、JAK 抑制剂、PDE-4 抑制剂更有效;而轻度 TCS 和 PDE-4 抑制剂的有效性相似。49 项试验(5261 名参与者)的 NMA 将临床医生的体征作为连续结果进行了报告,并将他克莫司 0.03% (SMD -2.69,95% CI -3.36,-2.02)和强效 TCS(SMD -1.87,95% CI -2.69,-1.05)列为最有效,两者的置信度均为中等;罗氟司特 0.15%、地芬司特 0.3% 和他汀那洛复 1% 被列为最无效。他克莫司 0.03% 的直接信息是基于一项 60 名参与者的试验,偏倚风险较高。在一些敏感性分析中,强效 TCS、他克莫司 0.1%、鲁索利替尼 1.5%、delgocitinib 0.5% 和 delgocitinib 0.25% 成为最有效的治疗方法。分类分析发现,强效/极强效TCS与强效TCI和JAK抑制剂的疗效相似,而中度/轻度TCS比轻度TCI更有效。另有 100 项试验(22,814 名参与者)将临床医生的体征作为连续结果进行了报告,但未能纳入 NMA。140项试验(23383名参与者)的研究者全局评估NMA将IGA作为二元结局进行了报告,并将鲁索利替尼的疗效排序为1.5%(OR 9.34,95% CI 4.8,18.18)、delgocitinib的疗效排序为0.5%(OR 10.08,95% CI 2.65,38.37)、delgocitinib的疗效排序为0.25%(OR 6.87,95% CI 1.79,26.33)、非常有效的 TCS(OR 8.34,95% CI 4.73,14.67)、有效的 TCS(OR 5.00,95% CI 3.80,6.58)和他克莫司 0.1%(OR 5.06,95% CI 3.59,7.13)为最有效,置信度均为中等。轻度 TCS、2% 的 crisaborole、1% 的 pimecrolimus、0.15% 的 roflumilast、0.3% 和 1% 的 difamilast 以及 0.03% 的 tacrolimus 效果最差。在对低偏倚风险信息(12项试验,1639名参与者)进行的敏感性分析中,强效TCS、delgocitinib 0.5%和delgocitinib 0.25%的疗效最好,而pimecrolimus 1%、roflumilast 0.15%、difamilast 1%和difamilast 0.3%的疗效最差。分类敏感性分析发现,强效/特强效TCS的疗效与强效TCI和JAK抑制剂相似,比PDE-4抑制剂更有效;轻度/中度TCS的疗效低于强效TCI,与轻度TCI的疗效相似。6 至 12 个月的长期结果显示,在一项配对荟萃分析中,1% 的吡美莫司相对于药物(4 项试验,2218 名参与者)的疗效可能有所提高,轻度/中度 TCS 的治疗成功率高于 1%的吡美莫司(基于 1 项试验,2045 名参与者)。局部不良反应 对报告了应用部位反应的 83 项试验(18992 名参与者,2424 个事件)进行的 NMA 将他克莫司 0.1%(OR 2.2,95% CI 1.53,3.17;中等置信度)、阿立哌罗 2%(OR 2.12,95%CI 1.18,3.81;高置信度)、他克莫司 0.03%(OR 1.51,95%CI 1.10,2.09;低置信度)和吡美莫司 1%(OR 1.44,95%CI 1.01,2.04;低置信度)最有可能引起现场反应。极强效、强效、中度和轻度 TCS 引起部位反应的可能性最小。对报告色素沉着变化的 8 项试验(1786 名参与者,3 起事件)进行的 NMA 发现,没有证据表明 TCS 和 crisaborole 2% 会增加色素沉着变化,轻度、中度或强效 TCS 的置信度较低,crisaborole 2% 的置信度中等。对报告皮肤变薄的 25 项试验(3691 名参与者,36 个事件)进行的 NMA 发现,没有证据表明短期(中位数 3 周,范围 1-16 周)使用轻度 TCS(OR 0.72,95% CI 0.12,4.31)、中度 TCS(OR 0.91,95% CI 0.16,5.33)、强效 TCS(OR 0.96,95% CI 0.21,4.43)或极强效 TCS(OR 0.88,95% CI 0.31,2.49)会增加皮肤变薄,可信度均较低。6至60个月的长期结果显示,轻度至强效TCS与TCI相比,皮肤变薄程度增加(3项试验,4069名参与者,6例TCS事件):强效 TCS、JAK 抑制剂和 0.1% 他克莫司一直被评为治疗湿疹最有效的局部抗炎疗法,而 PDE-4 抑制剂则被评为最无效的局部抗炎疗法。在五个疗效网络中的三个网络中,轻度 TCS 和 1%的 tapinarof 被列为疗效最差的治疗方法之一。TCI和2%的crisaborole最有可能引起局部涂抹部位反应,而TCS的可能性最小。我们没有发现短期使用 TCS 会导致皮肤变薄的证据,但长期使用 TCS 会导致皮肤变薄。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topical anti-inflammatory treatments for eczema: network meta-analysis.

Background: Eczema (atopic dermatitis) is the most burdensome skin condition worldwide and cannot currently be prevented or cured. Topical anti-inflammatory treatments are used to control eczema symptoms, but there is uncertainty about the relative effectiveness and safety of different topical anti-inflammatory treatments.

Objectives: To compare and rank the efficacy and safety of topical anti-inflammatory treatments for people with eczema using a network meta-analysis.

Search methods: We searched the Cochrane Skin Specialised Register, CENTRAL, MEDLINE, Embase and trial registries on 29 June 2023, and checked the reference lists of included studies.

Selection criteria: We included within-participant or between-participant randomised controlled trials (RCTs) in people of any age with eczema of any severity, but excluded trials in clinically infected eczema, seborrhoeic eczema, contact eczema, or hand eczema. We included topical anti-inflammatory treatments used for at least one week, compared with another anti-inflammatory treatment, no treatment, or vehicle/placebo. Vehicle is a 'carrier system' for an active pharmaceutical substance, which may also be used on its own as an emollient for dry skin. We excluded trials of topical antibiotics used alone, complementary therapies, emollients used alone, phototherapy, wet wraps, and systemic treatments.

Data collection and analysis: We used standard Cochrane methods. Primary outcomes were patient-reported eczema symptoms, clinician-reported eczema signs and investigator global assessment. Secondary outcomes were health-related quality of life, long-term control of eczema, withdrawal from treatment/study, and local adverse effects (application-site reactions, pigmentation changes and skin thinning/atrophy were identified as important concerns through patient and public involvement). We used CINeMA to quantify our confidence in the evidence for each outcome.

Main results: We included 291 studies involving 45,846 participants with the full spectrum of eczema severity, mainly conducted in high-income countries in secondary care settings. Most studies included adults, with only 31 studies limited to children aged < 12 years. Studies usually included male and female participants, multiple ethnic groups but predominantly white populations. Most studies were industry-funded (68%) or did not report their funding sources/details. Treatment duration and trial participation were a median of 21 and 28 days (ranging from 7 days to 5 years), respectively. Interventions used were topical corticosteroids (TCS) (172), topical calcineurin inhibitors (TCI) (134), phosphodiesterase-4 (PDE-4) inhibitors (55), janus kinase (JAK) inhibitors (30), aryl hydrocarbon receptor activators (10), or other topical agents (21). Comparators included vehicle (170) or other anti-inflammatory treatments. The risk of bias was high in 242 of the 272 (89.0%) trials contributing to data analyses, most commonly due to concerns about selective reporting. Network meta-analysis (NMA) was only possible for short-term outcomes. Patient-reported symptoms NMA of 40 trials (6482 participants) reporting patient-reported symptoms as a binary outcome ranked tacrolimus 0.1% (OR 6.27, 95% CI 1.19 to 32.98), potent TCS (OR 5.99, 95% CI 2.83 to 12.69), and ruxolitinib 1.5% (OR 5.64, 95% CI 1.26 to 25.25) as the most effective, all with low confidence. Mild TCS, roflumilast 0.15%, and crisaborole 2% were the least effective. Class-level sensitivity analysis found potent/very potent TCS had similar effectiveness to potent TCI and was more effective than mild TCI and PDE-4 inhibitors. NMA of 29 trials (3839 participants) reporting patient-reported symptoms as a continuous outcome ranked very potent TCS (SMD -1.99, 95% CI -3.25 to -0.73; low confidence) and tacrolimus 0.03% (SMD -1.57, 95% CI -2.42 to -0.72; moderate confidence) the highest. Direct information for tacrolimus 0.03% was based on one trial of 60 participants at high risk of bias. Roflumilast 0.15%, delgocitinib 0.25% or 0.5%, and tapinarof 1% were the least effective. Class-level sensitivity analysis found potent/very potent TCS had similar effectiveness to potent TCI and JAK inhibitors and mild/moderate TCS was less effective than mild TCI. A further 50 trials (9636 participants) reported patient-reported symptoms as a continuous outcome but could not be included in NMA. Clinician-reported signs NMA of 32 trials (4121 participants) reported clinician signs as a binary outcome and ranked potent TCS (OR 8.15, 95% CI 4.99, 13.57), tacrolimus 0.1% (OR 8.06, 95% CI 3.30, 19.67), ruxolitinib 1.5% (OR 7.72, 95% CI 4.92, 12.10), and delgocitinib 0.5% (OR 7.61, 95% CI 3.72, 15.58) as most effective, all with moderate confidence. Mild TCS, roflumilast 0.15%, crisaborole 2%, and tapinarof 1% were the least effective. Class-level sensitivity analysis found potent/very potent TCS more effective than potent TCI, mild TCI, JAK inhibitors, PDE-4 inhibitors; and mild TCS and PDE-4 inhibitors had similar effectiveness. NMA of 49 trials (5261 participants) reported clinician signs as a continuous outcome and ranked tacrolimus 0.03% (SMD -2.69, 95% CI -3.36, -2.02) and very potent TCS (SMD -1.87, 95% CI -2.69, -1.05) as most effective, both with moderate confidence; roflumilast 0.15%, difamilast 0.3% and tapinarof 1% were ranked as least effective. Direct information for tacrolimus 0.03% was based on one trial in 60 participants with a high risk of bias. For some sensitivity analyses, potent TCS, tacrolimus 0.1%, ruxolitinib 1.5%, delgocitinib 0.5% and delgocitinib 0.25% became some of the most effective treatments. Class-level analysis found potent/very potent TCS had similar effectiveness to potent TCI and JAK inhibitors, and moderate/mild TCS was more effective than mild TCI. A further 100 trials (22,814 participants) reported clinician signs as a continuous outcome but could not be included in NMA. Investigator Global Assessment NMA of 140 trials (23,383 participants) reported IGA as a binary outcome and ranked ruxolitinib 1.5% (OR 9.34, 95% CI 4.8, 18.18), delgocitinib 0.5% (OR 10.08, 95% CI 2.65, 38.37), delgocitinib 0.25% (OR 6.87, 95% CI 1.79, 26.33), very potent TCS (OR 8.34, 95% CI 4.73, 14.67), potent TCS (OR 5.00, 95% CI 3.80, 6.58), and tacrolimus 0.1% (OR 5.06, 95% CI 3.59, 7.13) as most effective, all with moderate confidence. Mild TCS, crisaborole 2%, pimecrolimus 1%, roflumilast 0.15%, difamilast 0.3% and 1%, and tacrolimus 0.03% were the least effective. In a sensitivity analysis of low risk of bias information (12 trials, 1639 participants), potent TCS, delgocitinib 0.5% and delgocitinib 0.25% were most effective, and pimecrolimus 1%, roflumilast 0.15%, difamilast 1% and difamilast 0.3% least effective. Class-level sensitivity analysis found potent/very potent TCS had similar effectiveness to potent TCI and JAK inhibitors and were more effective than PDE-4 inhibitors; mild/moderate TCS were less effective than potent TCI and had similar effectiveness to mild TCI. Longer-term outcomes over 6 to 12 months showed a possible increase in effectiveness for pimecrolimus 1% versus vehicle (4 trials, 2218 participants) in a pairwise meta-analysis, and greater treatment success with mild/moderate TCS than pimecrolimus 1% (based on 1 trial of 2045 participants). Local adverse effects NMA of 83 trials (18,992 participants, 2424 events) reporting application-site reactions ranked tacrolimus 0.1% (OR 2.2, 95% CI 1.53, 3.17; moderate confidence), crisaborole 2% (OR 2.12, 95% CI 1.18, 3.81; high confidence), tacrolimus 0.03% (OR 1.51, 95%CI 1.10, 2.09; low confidence), and pimecrolimus 1% (OR 1.44, 95% CI 1.01, 2.04; low confidence) as most likely to cause site reactions. Very potent, potent, moderate, and mild TCS were least likely to cause site reactions. NMA of eight trials (1786 participants, 3 events) reporting pigmentation changes found no evidence for increased pigmentation changes with TCS and crisaborole 2%, with low confidence for mild, moderate or potent TCS and moderate confidence for crisaborole 2%. NMA of 25 trials (3691 participants, 36 events) reporting skin thinning found no evidence for increased skin thinning with short-term (median 3 weeks, range 1-16 weeks) use of mild TCS (OR 0.72, 95% CI 0.12, 4.31), moderate TCS (OR 0.91, 95% CI 0.16, 5.33), potent TCS (OR 0.96, 95% CI 0.21, 4.43) or very potent TCS (OR 0.88, 95% CI 0.31, 2.49), all with low confidence. Longer-term outcomes over 6 to 60 months showed increased skin thinning with mild to potent TCS versus TCI (3 trials, 4069 participants, 6 events with TCS).

Authors' conclusions: Potent TCS, JAK inhibitors and tacrolimus 0.1% were consistently ranked as amongst the most effective topical anti-inflammatory treatments for eczema and PDE-4 inhibitors as amongst the least effective. Mild TCS and tapinarof 1% were ranked amongst the least effective treatments in three of five efficacy networks. TCI and crisaborole 2% were ranked most likely to cause local application-site reactions and TCS least likely. We found no evidence for increased skin thinning with short-term TCS but an increase with longer-term TCS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.60
自引率
2.40%
发文量
173
审稿时长
1-2 weeks
期刊介绍: The Cochrane Database of Systematic Reviews (CDSR) stands as the premier database for systematic reviews in healthcare. It comprises Cochrane Reviews, along with protocols for these reviews, editorials, and supplements. Owned and operated by Cochrane, a worldwide independent network of healthcare stakeholders, the CDSR (ISSN 1469-493X) encompasses a broad spectrum of health-related topics, including health services.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信