冷冻不会影响新采集股骨头的微观结构参数。

IF 1.4 4区 医学 Q4 CELL BIOLOGY
Cell and Tissue Banking Pub Date : 2024-09-01 Epub Date: 2024-08-05 DOI:10.1007/s10561-024-10147-y
Virginie Taillebot, Théo Krieger, Aurélien Maurel-Pantel, Youngji Kim, Matthieu Ollivier, Martine Pithioux
{"title":"冷冻不会影响新采集股骨头的微观结构参数。","authors":"Virginie Taillebot, Théo Krieger, Aurélien Maurel-Pantel, Youngji Kim, Matthieu Ollivier, Martine Pithioux","doi":"10.1007/s10561-024-10147-y","DOIUrl":null,"url":null,"abstract":"<p><p>The femoral head is one of the most commonly used bones for allografts and biomechanical studies. However, there are few reports on the trabecular bone microarchitectural parameters of freshly harvested trabecular bones. To our knowledge, this is the first study to characterize the microstructure of femoral heads tested immediately after surgery and compare it with the microstructure obtained with conventional freezing. This study aims to investigate whether freezing at -80 °C for 6 weeks affects the trabecular microstructure of freshly harvested bone tissue. This study was divided into two groups: one with freshly harvested human femoral heads and the other with the same human femoral heads frozen at -80 °C for 6 weeks. Each femoral head was scanned using an X-ray microcomputed tomography scanner (µCT) to obtain the microarchitectural parameters, including the bone volume fraction (BV/TV), the mean trabecular thickness (Tb.th), the trabecular separation (Tb.sp), the degree of anisotropy (DA), and the connectivity density (Conn.D). There was no statistically significant difference between the fresh and the frozen groups for any of the parameters measured. This study shows that freezing at -80 °C for 6 weeks does not alter bone microstructure compared with freshly harvested femoral heads tested immediately after surgery.</p>","PeriodicalId":9723,"journal":{"name":"Cell and Tissue Banking","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Freezing does not influence the microarchitectural parameters of the microstructure of the freshly harvested femoral head bone.\",\"authors\":\"Virginie Taillebot, Théo Krieger, Aurélien Maurel-Pantel, Youngji Kim, Matthieu Ollivier, Martine Pithioux\",\"doi\":\"10.1007/s10561-024-10147-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The femoral head is one of the most commonly used bones for allografts and biomechanical studies. However, there are few reports on the trabecular bone microarchitectural parameters of freshly harvested trabecular bones. To our knowledge, this is the first study to characterize the microstructure of femoral heads tested immediately after surgery and compare it with the microstructure obtained with conventional freezing. This study aims to investigate whether freezing at -80 °C for 6 weeks affects the trabecular microstructure of freshly harvested bone tissue. This study was divided into two groups: one with freshly harvested human femoral heads and the other with the same human femoral heads frozen at -80 °C for 6 weeks. Each femoral head was scanned using an X-ray microcomputed tomography scanner (µCT) to obtain the microarchitectural parameters, including the bone volume fraction (BV/TV), the mean trabecular thickness (Tb.th), the trabecular separation (Tb.sp), the degree of anisotropy (DA), and the connectivity density (Conn.D). There was no statistically significant difference between the fresh and the frozen groups for any of the parameters measured. This study shows that freezing at -80 °C for 6 weeks does not alter bone microstructure compared with freshly harvested femoral heads tested immediately after surgery.</p>\",\"PeriodicalId\":9723,\"journal\":{\"name\":\"Cell and Tissue Banking\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell and Tissue Banking\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10561-024-10147-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Banking","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10561-024-10147-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

股骨头是异体移植和生物力学研究中最常用的骨骼之一。然而,关于新鲜采集的骨小梁微结构参数的报道却很少。据我们所知,这是第一项对手术后立即测试的股骨头微观结构进行表征并与传统冷冻法获得的微观结构进行比较的研究。本研究旨在探讨-80 °C冷冻6周是否会影响新鲜采集骨组织的骨小梁显微结构。这项研究分为两组:一组是新鲜采集的人类股骨头,另一组是在-80 °C下冷冻6周的相同人类股骨头。使用 X 射线微计算机断层扫描仪(µCT)对每个股骨头进行扫描,以获得微结构参数,包括骨体积分数(BV/TV)、平均骨小梁厚度(Tb.th)、骨小梁分离度(Tb.sp)、各向异性程度(DA)和连接密度(Conn.D)。新鲜组和冷冻组所测量的任何参数在统计学上都没有明显差异。这项研究表明,与手术后立即测试的新鲜股骨头相比,在-80 °C下冷冻6周不会改变骨的微观结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Freezing does not influence the microarchitectural parameters of the microstructure of the freshly harvested femoral head bone.

Freezing does not influence the microarchitectural parameters of the microstructure of the freshly harvested femoral head bone.

The femoral head is one of the most commonly used bones for allografts and biomechanical studies. However, there are few reports on the trabecular bone microarchitectural parameters of freshly harvested trabecular bones. To our knowledge, this is the first study to characterize the microstructure of femoral heads tested immediately after surgery and compare it with the microstructure obtained with conventional freezing. This study aims to investigate whether freezing at -80 °C for 6 weeks affects the trabecular microstructure of freshly harvested bone tissue. This study was divided into two groups: one with freshly harvested human femoral heads and the other with the same human femoral heads frozen at -80 °C for 6 weeks. Each femoral head was scanned using an X-ray microcomputed tomography scanner (µCT) to obtain the microarchitectural parameters, including the bone volume fraction (BV/TV), the mean trabecular thickness (Tb.th), the trabecular separation (Tb.sp), the degree of anisotropy (DA), and the connectivity density (Conn.D). There was no statistically significant difference between the fresh and the frozen groups for any of the parameters measured. This study shows that freezing at -80 °C for 6 weeks does not alter bone microstructure compared with freshly harvested femoral heads tested immediately after surgery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell and Tissue Banking
Cell and Tissue Banking CELL BIOLOGY-ENGINEERING, BIOMEDICAL
CiteScore
3.10
自引率
13.30%
发文量
68
审稿时长
6-12 weeks
期刊介绍: Cell and Tissue Banking provides a forum for disseminating information to scientists and clinicians involved in the banking and transplantation of cells and tissues. Cell and Tissue Banking is an international, peer-reviewed journal that publishes original papers in the following areas: basic research concerning general aspects of tissue banking such as quality assurance and control of banked cells/tissues, effects of preservation and sterilisation methods on cells/tissues, biotechnology, etc.; clinical applications of banked cells/tissues; standards of practice in procurement, processing, storage and distribution of cells/tissues; ethical issues; medico-legal issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信