{"title":"酵母磷脂酸磷酸酶 Pah1 结构域/区域的结构和功能。","authors":"","doi":"10.1016/j.bbalip.2024.159547","DOIUrl":null,"url":null,"abstract":"<div><p>Phosphatidate (PA) phosphatase, which catalyzes the Mg<sup>2+</sup>-dependent dephosphorylation of PA to produce diacylglycerol, provides a direct precursor for the synthesis of the storage lipid triacylglycerol and the membrane phospholipids phosphatidylcholine and phosphatidylethanolamine. The enzyme controlling the key phospholipid PA also plays a crucial role in diverse aspects of lipid metabolism and cell physiology. PA phosphatase is a peripheral membrane enzyme that is composed of multiple domains/regions required for its catalytic function and subcellular localization. In this review, we discuss the domains/regions of PA phosphatase from the yeast <em>Saccharomyces cerevisiae</em> with reference to the homologous enzyme from mammalian cells.</p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388198124000970/pdfft?md5=c0bad1fd3e0858c472094011213bebc1&pid=1-s2.0-S1388198124000970-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Architecture and function of yeast phosphatidate phosphatase Pah1 domains/regions\",\"authors\":\"\",\"doi\":\"10.1016/j.bbalip.2024.159547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Phosphatidate (PA) phosphatase, which catalyzes the Mg<sup>2+</sup>-dependent dephosphorylation of PA to produce diacylglycerol, provides a direct precursor for the synthesis of the storage lipid triacylglycerol and the membrane phospholipids phosphatidylcholine and phosphatidylethanolamine. The enzyme controlling the key phospholipid PA also plays a crucial role in diverse aspects of lipid metabolism and cell physiology. PA phosphatase is a peripheral membrane enzyme that is composed of multiple domains/regions required for its catalytic function and subcellular localization. In this review, we discuss the domains/regions of PA phosphatase from the yeast <em>Saccharomyces cerevisiae</em> with reference to the homologous enzyme from mammalian cells.</p></div>\",\"PeriodicalId\":8815,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular and cell biology of lipids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1388198124000970/pdfft?md5=c0bad1fd3e0858c472094011213bebc1&pid=1-s2.0-S1388198124000970-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular and cell biology of lipids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388198124000970\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388198124000970","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
磷脂酰(PA)磷酸酶催化 Mg2+ 依赖性的 PA 去磷酸化,生成二酰甘油,为合成储存脂质三酰甘油以及膜磷脂磷脂酰胆碱和磷脂酰乙醇胺提供了直接前体。控制关键磷脂 PA 的酶在脂质代谢和细胞生理的多个方面也发挥着至关重要的作用。PA 磷酸酶是一种外周膜酶,由其催化功能和亚细胞定位所需的多个结构域/区域组成。在本综述中,我们将参照哺乳动物细胞中的同源酶,讨论来自酿酒酵母的 PA 磷酸酶的结构域/区域。
Architecture and function of yeast phosphatidate phosphatase Pah1 domains/regions
Phosphatidate (PA) phosphatase, which catalyzes the Mg2+-dependent dephosphorylation of PA to produce diacylglycerol, provides a direct precursor for the synthesis of the storage lipid triacylglycerol and the membrane phospholipids phosphatidylcholine and phosphatidylethanolamine. The enzyme controlling the key phospholipid PA also plays a crucial role in diverse aspects of lipid metabolism and cell physiology. PA phosphatase is a peripheral membrane enzyme that is composed of multiple domains/regions required for its catalytic function and subcellular localization. In this review, we discuss the domains/regions of PA phosphatase from the yeast Saccharomyces cerevisiae with reference to the homologous enzyme from mammalian cells.
期刊介绍:
BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.