Carolyn Gigot, Nora Pisanic, Kristoffer Spicer, Meghan F Davis, Kate Kruczynski, Magdielis Gregory Rivera, Kirsten Koehler, D J Hall, Devon J Hall, Christopher D Heaney
{"title":"2021 年至 2022 年美国北卡罗来纳州按行业、工作场所特征和工作场所感染预防与控制措施分列的 SARS-CoV-2 抗体流行率。","authors":"Carolyn Gigot, Nora Pisanic, Kristoffer Spicer, Meghan F Davis, Kate Kruczynski, Magdielis Gregory Rivera, Kirsten Koehler, D J Hall, Devon J Hall, Christopher D Heaney","doi":"10.1093/annweh/wxae067","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic has disproportionately affected workers in certain industries and occupations, and the workplace can be a high-risk setting for SARS-CoV-2 transmission. In this study, we measured SARS-CoV-2 antibody prevalence and identified work-related risk factors in a population primarily working at industrial livestock operations. We used a multiplex salivary SARS-CoV-2 IgG assay to determine infection-induced antibody prevalence among 236 adult (≥18 yr) North Carolina residents between February 2021 and August 2022. We used the National Institute for Occupational Safety and Health Industry and Occupation Computerized Coding System (NIOCCS) to classify employed participants' industry. Most participants (55%, 95% confidence interval [CI] 49% to 62%) were infection-induced IgG positive, including 71% (95% CI 60% to 83%) of animal slaughtering and processing industry workers, 1.5 to 4.3 times North Carolina general population infection-induced seroprevalence estimates during overlapping time periods. Considering self-reported diagnostic test positivity and vaccination history in addition to antibodies, the proportion of participants with evidence of prior infection increased slightly to 61% (95% CI 55% to 67%), including 75% (95% CI 64% to 87%) of animal slaughtering and processing workers. Participants with more than 1000 compared to 10 or fewer coworkers at their jobsite had higher odds of prior infection (adjusted odds ratio 4.5, 95% CI 1.0 to 21.0). This study contributes evidence of the severe and disproportionate impacts of COVID-19 on animal slaughtering and processing workers and workers in large congregate settings.</p>","PeriodicalId":8362,"journal":{"name":"Annals Of Work Exposures and Health","volume":" ","pages":"881-889"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427537/pdf/","citationCount":"0","resultStr":"{\"title\":\"SARS-CoV-2 antibody prevalence by industry, workplace characteristics, and workplace infection prevention and control measures, North Carolina, USA, 2021 to 2022.\",\"authors\":\"Carolyn Gigot, Nora Pisanic, Kristoffer Spicer, Meghan F Davis, Kate Kruczynski, Magdielis Gregory Rivera, Kirsten Koehler, D J Hall, Devon J Hall, Christopher D Heaney\",\"doi\":\"10.1093/annweh/wxae067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The COVID-19 pandemic has disproportionately affected workers in certain industries and occupations, and the workplace can be a high-risk setting for SARS-CoV-2 transmission. In this study, we measured SARS-CoV-2 antibody prevalence and identified work-related risk factors in a population primarily working at industrial livestock operations. We used a multiplex salivary SARS-CoV-2 IgG assay to determine infection-induced antibody prevalence among 236 adult (≥18 yr) North Carolina residents between February 2021 and August 2022. We used the National Institute for Occupational Safety and Health Industry and Occupation Computerized Coding System (NIOCCS) to classify employed participants' industry. Most participants (55%, 95% confidence interval [CI] 49% to 62%) were infection-induced IgG positive, including 71% (95% CI 60% to 83%) of animal slaughtering and processing industry workers, 1.5 to 4.3 times North Carolina general population infection-induced seroprevalence estimates during overlapping time periods. Considering self-reported diagnostic test positivity and vaccination history in addition to antibodies, the proportion of participants with evidence of prior infection increased slightly to 61% (95% CI 55% to 67%), including 75% (95% CI 64% to 87%) of animal slaughtering and processing workers. Participants with more than 1000 compared to 10 or fewer coworkers at their jobsite had higher odds of prior infection (adjusted odds ratio 4.5, 95% CI 1.0 to 21.0). This study contributes evidence of the severe and disproportionate impacts of COVID-19 on animal slaughtering and processing workers and workers in large congregate settings.</p>\",\"PeriodicalId\":8362,\"journal\":{\"name\":\"Annals Of Work Exposures and Health\",\"volume\":\" \",\"pages\":\"881-889\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427537/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals Of Work Exposures and Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/annweh/wxae067\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals Of Work Exposures and Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/annweh/wxae067","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
SARS-CoV-2 antibody prevalence by industry, workplace characteristics, and workplace infection prevention and control measures, North Carolina, USA, 2021 to 2022.
The COVID-19 pandemic has disproportionately affected workers in certain industries and occupations, and the workplace can be a high-risk setting for SARS-CoV-2 transmission. In this study, we measured SARS-CoV-2 antibody prevalence and identified work-related risk factors in a population primarily working at industrial livestock operations. We used a multiplex salivary SARS-CoV-2 IgG assay to determine infection-induced antibody prevalence among 236 adult (≥18 yr) North Carolina residents between February 2021 and August 2022. We used the National Institute for Occupational Safety and Health Industry and Occupation Computerized Coding System (NIOCCS) to classify employed participants' industry. Most participants (55%, 95% confidence interval [CI] 49% to 62%) were infection-induced IgG positive, including 71% (95% CI 60% to 83%) of animal slaughtering and processing industry workers, 1.5 to 4.3 times North Carolina general population infection-induced seroprevalence estimates during overlapping time periods. Considering self-reported diagnostic test positivity and vaccination history in addition to antibodies, the proportion of participants with evidence of prior infection increased slightly to 61% (95% CI 55% to 67%), including 75% (95% CI 64% to 87%) of animal slaughtering and processing workers. Participants with more than 1000 compared to 10 or fewer coworkers at their jobsite had higher odds of prior infection (adjusted odds ratio 4.5, 95% CI 1.0 to 21.0). This study contributes evidence of the severe and disproportionate impacts of COVID-19 on animal slaughtering and processing workers and workers in large congregate settings.
期刊介绍:
About the Journal
Annals of Work Exposures and Health is dedicated to presenting advances in exposure science supporting the recognition, quantification, and control of exposures at work, and epidemiological studies on their effects on human health and well-being. A key question we apply to submission is, "Is this paper going to help readers better understand, quantify, and control conditions at work that adversely or positively affect health and well-being?"
We are interested in high quality scientific research addressing:
the quantification of work exposures, including chemical, biological, physical, biomechanical, and psychosocial, and the elements of work organization giving rise to such exposures;
the relationship between these exposures and the acute and chronic health consequences for those exposed and their families and communities;
populations at special risk of work-related exposures including women, under-represented minorities, immigrants, and other vulnerable groups such as temporary, contingent and informal sector workers;
the effectiveness of interventions addressing exposure and risk including production technologies, work process engineering, and personal protective systems;
policies and management approaches to reduce risk and improve health and well-being among workers, their families or communities;
methodologies and mechanisms that underlie the quantification and/or control of exposure and risk.
There is heavy pressure on space in the journal, and the above interests mean that we do not usually publish papers that simply report local conditions without generalizable results. We are also unlikely to publish reports on human health and well-being without information on the work exposure characteristics giving rise to the effects. We particularly welcome contributions from scientists based in, or addressing conditions in, developing economies that fall within the above scope.