在制定 0.025 mg/m3 职业接触限值时,降低通过 X 射线衍射分析可吸入结晶二氧化硅的报告限值。

IF 1.8 4区 医学 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Akemi Ichikawa, Elisabeth Corke, Anne-Marie Moubarak, Martin Mazereeuw, John Volpato, Michael Weller, Dennis Clemence
{"title":"在制定 0.025 mg/m3 职业接触限值时,降低通过 X 射线衍射分析可吸入结晶二氧化硅的报告限值。","authors":"Akemi Ichikawa, Elisabeth Corke, Anne-Marie Moubarak, Martin Mazereeuw, John Volpato, Michael Weller, Dennis Clemence","doi":"10.1093/annweh/wxae066","DOIUrl":null,"url":null,"abstract":"<p><p>Internationally, respirable crystalline silica (RCS) occupational exposure limits (OELs) are being reassessed and, in some jurisdictions, lowered, putting pressure on the capabilities of the analytical techniques used to achieve robust analyses and reliable detection limits. In preparation of a lower OEL, options for lowering the limit of detection (LoD) for RCS analysis have been assessed. Using a Direct-on-Filter X-Ray Diffraction (XRD) analysis under reduced scan speeds in combination with low-noise RCS sampling filters, an LoD of 0.25 µg/filter and a limit of quantification (LoQ) of 0.82 µg/filter can be achieved. Both limits would translate in an LoD of 0.24 µg/m3 and LoQ of 0.78 µg/m3 when sampling respirable dust for 8 h at 2.2 L/min, providing a technical solution to monitor exposures at the proposed OEL of 0.025 mg/m3 (25 µg /m3) and below, with general sampling conditions as typically applied in Australia. This is the first report showing that the OEL of 0.025 mg/m3 (25 µg /m3) is measurable by one of the standardized, direct-on-filter XRD methods.</p>","PeriodicalId":8362,"journal":{"name":"Annals Of Work Exposures and Health","volume":" ","pages":"859-866"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lowering reporting limit values for respirable crystalline silica analysis by X-ray diffraction in preparation of the 0.025 mg/m3 occupational exposure limit.\",\"authors\":\"Akemi Ichikawa, Elisabeth Corke, Anne-Marie Moubarak, Martin Mazereeuw, John Volpato, Michael Weller, Dennis Clemence\",\"doi\":\"10.1093/annweh/wxae066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Internationally, respirable crystalline silica (RCS) occupational exposure limits (OELs) are being reassessed and, in some jurisdictions, lowered, putting pressure on the capabilities of the analytical techniques used to achieve robust analyses and reliable detection limits. In preparation of a lower OEL, options for lowering the limit of detection (LoD) for RCS analysis have been assessed. Using a Direct-on-Filter X-Ray Diffraction (XRD) analysis under reduced scan speeds in combination with low-noise RCS sampling filters, an LoD of 0.25 µg/filter and a limit of quantification (LoQ) of 0.82 µg/filter can be achieved. Both limits would translate in an LoD of 0.24 µg/m3 and LoQ of 0.78 µg/m3 when sampling respirable dust for 8 h at 2.2 L/min, providing a technical solution to monitor exposures at the proposed OEL of 0.025 mg/m3 (25 µg /m3) and below, with general sampling conditions as typically applied in Australia. This is the first report showing that the OEL of 0.025 mg/m3 (25 µg /m3) is measurable by one of the standardized, direct-on-filter XRD methods.</p>\",\"PeriodicalId\":8362,\"journal\":{\"name\":\"Annals Of Work Exposures and Health\",\"volume\":\" \",\"pages\":\"859-866\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals Of Work Exposures and Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/annweh/wxae066\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals Of Work Exposures and Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/annweh/wxae066","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

国际上正在对可吸入结晶二氧化硅(RCS)的职业接触限值(OEL)进行重新评估,并在某些司法管辖区降低了该限值,这对用于实现可靠分析和可靠检测限值的分析技术的能力造成了压力。为了准备降低 OEL,我们对降低 RCS 分析检测限 (LoD) 的方案进行了评估。在扫描速度降低的情况下,结合低噪声 RCS 采样滤波器使用滤波器上直接 X 射线衍射 (XRD) 分析,可实现 0.25 微克/滤波器的 LoD 和 0.82 微克/滤波器的定量限 (LoQ)。当以 2.2 升/分钟的速度对可吸入粉尘进行 8 小时采样时,这两个限值将转化为 0.24 微克/立方米的 LoD 和 0.78 微克/立方米的 LoQ,从而为监测建议的 OEL 值 0.025 毫克/立方米(25 微克/立方米)及以下的暴露提供了技术解决方案,并符合澳大利亚通常采用的一般采样条件。这是第一份表明 0.025 毫克/立方米(25 微克/立方米)的 OEL 值可以通过一种标准化的直接过滤 XRD 方法测量的报告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lowering reporting limit values for respirable crystalline silica analysis by X-ray diffraction in preparation of the 0.025 mg/m3 occupational exposure limit.

Internationally, respirable crystalline silica (RCS) occupational exposure limits (OELs) are being reassessed and, in some jurisdictions, lowered, putting pressure on the capabilities of the analytical techniques used to achieve robust analyses and reliable detection limits. In preparation of a lower OEL, options for lowering the limit of detection (LoD) for RCS analysis have been assessed. Using a Direct-on-Filter X-Ray Diffraction (XRD) analysis under reduced scan speeds in combination with low-noise RCS sampling filters, an LoD of 0.25 µg/filter and a limit of quantification (LoQ) of 0.82 µg/filter can be achieved. Both limits would translate in an LoD of 0.24 µg/m3 and LoQ of 0.78 µg/m3 when sampling respirable dust for 8 h at 2.2 L/min, providing a technical solution to monitor exposures at the proposed OEL of 0.025 mg/m3 (25 µg /m3) and below, with general sampling conditions as typically applied in Australia. This is the first report showing that the OEL of 0.025 mg/m3 (25 µg /m3) is measurable by one of the standardized, direct-on-filter XRD methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals Of Work Exposures and Health
Annals Of Work Exposures and Health Medicine-Public Health, Environmental and Occupational Health
CiteScore
4.60
自引率
19.20%
发文量
79
期刊介绍: About the Journal Annals of Work Exposures and Health is dedicated to presenting advances in exposure science supporting the recognition, quantification, and control of exposures at work, and epidemiological studies on their effects on human health and well-being. A key question we apply to submission is, "Is this paper going to help readers better understand, quantify, and control conditions at work that adversely or positively affect health and well-being?" We are interested in high quality scientific research addressing: the quantification of work exposures, including chemical, biological, physical, biomechanical, and psychosocial, and the elements of work organization giving rise to such exposures; the relationship between these exposures and the acute and chronic health consequences for those exposed and their families and communities; populations at special risk of work-related exposures including women, under-represented minorities, immigrants, and other vulnerable groups such as temporary, contingent and informal sector workers; the effectiveness of interventions addressing exposure and risk including production technologies, work process engineering, and personal protective systems; policies and management approaches to reduce risk and improve health and well-being among workers, their families or communities; methodologies and mechanisms that underlie the quantification and/or control of exposure and risk. There is heavy pressure on space in the journal, and the above interests mean that we do not usually publish papers that simply report local conditions without generalizable results. We are also unlikely to publish reports on human health and well-being without information on the work exposure characteristics giving rise to the effects. We particularly welcome contributions from scientists based in, or addressing conditions in, developing economies that fall within the above scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信