{"title":"水下盾构隧道节段接头开口在长期运营期间的变化","authors":"","doi":"10.1016/j.tust.2024.105976","DOIUrl":null,"url":null,"abstract":"<div><p>Segment joint is the main water leakage channel in underwater shield tunnels, and joint deformation influences tunnel waterproof capacity greatly. Real-time structure health monitoring is a great way to investigate the joint opening and to offer early warnings for abnormality, such as data outlier and joint properties degradation. This study investigated the variation of joint opening, provided early warning indexes and evaluated the joint mechanical properties degradation using the field monitoring data of an underwater shield tunnel over 10 years, which is rarely seen in the literature. Study results show that: (1) Field monitoring data reveals that the distribution of joint opening increments obeys a heavy-tailed distribution rather than the normal distribution. The exponential distribution model and the log normal distribution model can fit the longitudinal joint increments and circumferential joint increments much better. (2) The early warning index is determined based on the statistic theory and 0.999 quantile is set as the warning value. The obtained warning values of the studied underwater tunnel are 0.005 mm and 0.08 mm for the longitudinal and circumferential joint respectively. The small warning value means that small abnormality can be identified and the early warning would be more efficient. (3) A mechanical model is proposed to evaluate the joint mechanical properties degradation based on monitoring data. Results show that normal stiffness of circumferential joint decreases from 18.3 GPa/m to 14.7 GPa/m. Results of this study provides valuable reference for early-warning and joint degradation evaluation of under water shield tunnel.</p></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variation of segment joint opening of underwater shield tunnel during long operational period\",\"authors\":\"\",\"doi\":\"10.1016/j.tust.2024.105976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Segment joint is the main water leakage channel in underwater shield tunnels, and joint deformation influences tunnel waterproof capacity greatly. Real-time structure health monitoring is a great way to investigate the joint opening and to offer early warnings for abnormality, such as data outlier and joint properties degradation. This study investigated the variation of joint opening, provided early warning indexes and evaluated the joint mechanical properties degradation using the field monitoring data of an underwater shield tunnel over 10 years, which is rarely seen in the literature. Study results show that: (1) Field monitoring data reveals that the distribution of joint opening increments obeys a heavy-tailed distribution rather than the normal distribution. The exponential distribution model and the log normal distribution model can fit the longitudinal joint increments and circumferential joint increments much better. (2) The early warning index is determined based on the statistic theory and 0.999 quantile is set as the warning value. The obtained warning values of the studied underwater tunnel are 0.005 mm and 0.08 mm for the longitudinal and circumferential joint respectively. The small warning value means that small abnormality can be identified and the early warning would be more efficient. (3) A mechanical model is proposed to evaluate the joint mechanical properties degradation based on monitoring data. Results show that normal stiffness of circumferential joint decreases from 18.3 GPa/m to 14.7 GPa/m. Results of this study provides valuable reference for early-warning and joint degradation evaluation of under water shield tunnel.</p></div>\",\"PeriodicalId\":49414,\"journal\":{\"name\":\"Tunnelling and Underground Space Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunnelling and Underground Space Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0886779824003948\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0886779824003948","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Variation of segment joint opening of underwater shield tunnel during long operational period
Segment joint is the main water leakage channel in underwater shield tunnels, and joint deformation influences tunnel waterproof capacity greatly. Real-time structure health monitoring is a great way to investigate the joint opening and to offer early warnings for abnormality, such as data outlier and joint properties degradation. This study investigated the variation of joint opening, provided early warning indexes and evaluated the joint mechanical properties degradation using the field monitoring data of an underwater shield tunnel over 10 years, which is rarely seen in the literature. Study results show that: (1) Field monitoring data reveals that the distribution of joint opening increments obeys a heavy-tailed distribution rather than the normal distribution. The exponential distribution model and the log normal distribution model can fit the longitudinal joint increments and circumferential joint increments much better. (2) The early warning index is determined based on the statistic theory and 0.999 quantile is set as the warning value. The obtained warning values of the studied underwater tunnel are 0.005 mm and 0.08 mm for the longitudinal and circumferential joint respectively. The small warning value means that small abnormality can be identified and the early warning would be more efficient. (3) A mechanical model is proposed to evaluate the joint mechanical properties degradation based on monitoring data. Results show that normal stiffness of circumferential joint decreases from 18.3 GPa/m to 14.7 GPa/m. Results of this study provides valuable reference for early-warning and joint degradation evaluation of under water shield tunnel.
期刊介绍:
Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.