高阶广义反应-对流-扩散方程的周期波解

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Minzhi Wei , Xingwu Chen , Yanfei Dai
{"title":"高阶广义反应-对流-扩散方程的周期波解","authors":"Minzhi Wei ,&nbsp;Xingwu Chen ,&nbsp;Yanfei Dai","doi":"10.1016/j.aml.2024.109249","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the uniqueness of periodic wave solutions for a generalized reaction–convection–diffusion equation with arbitrarily high-order reaction term or convection term. The main technique is to prove the monotonicity of the ratio of two Abelian integrals by a new criterion and Descartes’ rule of signs. A positive answer to a conjecture stated in Wei and Chen (2023) is given and some numeric simulations are carried out to illustrate the obtained theoretical results.</p></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic wave solutions for a generalized reaction–convection–diffusion equation of high-order\",\"authors\":\"Minzhi Wei ,&nbsp;Xingwu Chen ,&nbsp;Yanfei Dai\",\"doi\":\"10.1016/j.aml.2024.109249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we investigate the uniqueness of periodic wave solutions for a generalized reaction–convection–diffusion equation with arbitrarily high-order reaction term or convection term. The main technique is to prove the monotonicity of the ratio of two Abelian integrals by a new criterion and Descartes’ rule of signs. A positive answer to a conjecture stated in Wei and Chen (2023) is given and some numeric simulations are carried out to illustrate the obtained theoretical results.</p></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924002696\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924002696","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有任意高阶反应项或对流项的广义反应-对流-扩散方程的周期波解的唯一性。主要技术是通过一种新准则和笛卡尔符号规则证明两个阿贝尔积分之比的单调性。对 Wei 和 Chen (2023) 提出的一个猜想给出了肯定的答案,并进行了一些数值模拟来说明所获得的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic wave solutions for a generalized reaction–convection–diffusion equation of high-order

In this paper, we investigate the uniqueness of periodic wave solutions for a generalized reaction–convection–diffusion equation with arbitrarily high-order reaction term or convection term. The main technique is to prove the monotonicity of the ratio of two Abelian integrals by a new criterion and Descartes’ rule of signs. A positive answer to a conjecture stated in Wei and Chen (2023) is given and some numeric simulations are carried out to illustrate the obtained theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信