{"title":"基于注意机制的深度学习方法,用于根据遥感变量进行小麦产量估算和不确定性分析","authors":"","doi":"10.1016/j.agrformet.2024.110183","DOIUrl":null,"url":null,"abstract":"<div><p>Rapid and accurate crop yield estimation is an imperative aspect of agricultural planning that is important for crop management, food security and commodity trading. There are many related factors affecting wheat yield and the relationship between them and the yield is complicated, with nonlinear spatial-temporal characteristics that are difficult to describe accurately with mathematical functions. Deep learning models can fit complex nonlinear functions efficiently and transform input data into high-dimensional features automatically. However, the feature learning process does not produce transparent information. There has been considerable evidence that the ability of attention mechanism for modeling interpretation has been demonstrated in many fields. Therefore, an attention mechanism-based multi-level crop network (AMCN) was proposed to estimate the county level wheat yield based on remote sensing data and meteorological data. To explore the difference in spatio-temporal feature extraction ability under parallel and series structures when combining CNN with LSTM, we designed the AMCN models with two forms of structure, one is a parallel module of LSTM and CNN (AMCN1) and the other is a serial connection module between LSTM and CNN (AMCN2). Our results showed that the AMCN1 model provided an improved estimation accuracy as compared to that of the AMCN2 model. We also found remote sensing data contributed significantly to crop yield estimation mainly at the late growth stages, meteorological data provided additional information mainly at the early growth stage. We assessed the estimated uncertainty using Monte Carlo dropout, and the results indicated that the uncertainty level decreased gradually as the growth stages proceeded. In addition, extreme events such as drought and uneven distribution characteristics of the samples were associated with much higher estimated uncertainties. The study highlighted that the proposed model provided more accurate yield estimations by taking advantage of multi-level crop networks while considering the uncertainty involved in model estimations.</p></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attention mechanism-based deep learning approach for wheat yield estimation and uncertainty analysis from remotely sensed variables\",\"authors\":\"\",\"doi\":\"10.1016/j.agrformet.2024.110183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rapid and accurate crop yield estimation is an imperative aspect of agricultural planning that is important for crop management, food security and commodity trading. There are many related factors affecting wheat yield and the relationship between them and the yield is complicated, with nonlinear spatial-temporal characteristics that are difficult to describe accurately with mathematical functions. Deep learning models can fit complex nonlinear functions efficiently and transform input data into high-dimensional features automatically. However, the feature learning process does not produce transparent information. There has been considerable evidence that the ability of attention mechanism for modeling interpretation has been demonstrated in many fields. Therefore, an attention mechanism-based multi-level crop network (AMCN) was proposed to estimate the county level wheat yield based on remote sensing data and meteorological data. To explore the difference in spatio-temporal feature extraction ability under parallel and series structures when combining CNN with LSTM, we designed the AMCN models with two forms of structure, one is a parallel module of LSTM and CNN (AMCN1) and the other is a serial connection module between LSTM and CNN (AMCN2). Our results showed that the AMCN1 model provided an improved estimation accuracy as compared to that of the AMCN2 model. We also found remote sensing data contributed significantly to crop yield estimation mainly at the late growth stages, meteorological data provided additional information mainly at the early growth stage. We assessed the estimated uncertainty using Monte Carlo dropout, and the results indicated that the uncertainty level decreased gradually as the growth stages proceeded. In addition, extreme events such as drought and uneven distribution characteristics of the samples were associated with much higher estimated uncertainties. The study highlighted that the proposed model provided more accurate yield estimations by taking advantage of multi-level crop networks while considering the uncertainty involved in model estimations.</p></div>\",\"PeriodicalId\":50839,\"journal\":{\"name\":\"Agricultural and Forest Meteorology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural and Forest Meteorology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016819232400296X\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016819232400296X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Attention mechanism-based deep learning approach for wheat yield estimation and uncertainty analysis from remotely sensed variables
Rapid and accurate crop yield estimation is an imperative aspect of agricultural planning that is important for crop management, food security and commodity trading. There are many related factors affecting wheat yield and the relationship between them and the yield is complicated, with nonlinear spatial-temporal characteristics that are difficult to describe accurately with mathematical functions. Deep learning models can fit complex nonlinear functions efficiently and transform input data into high-dimensional features automatically. However, the feature learning process does not produce transparent information. There has been considerable evidence that the ability of attention mechanism for modeling interpretation has been demonstrated in many fields. Therefore, an attention mechanism-based multi-level crop network (AMCN) was proposed to estimate the county level wheat yield based on remote sensing data and meteorological data. To explore the difference in spatio-temporal feature extraction ability under parallel and series structures when combining CNN with LSTM, we designed the AMCN models with two forms of structure, one is a parallel module of LSTM and CNN (AMCN1) and the other is a serial connection module between LSTM and CNN (AMCN2). Our results showed that the AMCN1 model provided an improved estimation accuracy as compared to that of the AMCN2 model. We also found remote sensing data contributed significantly to crop yield estimation mainly at the late growth stages, meteorological data provided additional information mainly at the early growth stage. We assessed the estimated uncertainty using Monte Carlo dropout, and the results indicated that the uncertainty level decreased gradually as the growth stages proceeded. In addition, extreme events such as drought and uneven distribution characteristics of the samples were associated with much higher estimated uncertainties. The study highlighted that the proposed model provided more accurate yield estimations by taking advantage of multi-level crop networks while considering the uncertainty involved in model estimations.
期刊介绍:
Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published.
Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.