{"title":"威尔斯-道森多氧金属盐概述:从结构和功能化到应用","authors":"","doi":"10.1016/j.ccr.2024.216091","DOIUrl":null,"url":null,"abstract":"<div><p>Wells-Dawson polyoxometalates (WD POMs) are an important subgroup within the diverse family of POMs. In the last two decades, there has been remarkable progress in the structure modification and post-functionalization of WD POMs, which has unlocked their enormous potential across various domains, including energy materials, catalysis (photocatalysis, electrocatalysis), functional materials (sensors, optical materials, electrochromic materials, magnetic materials) or biology/medicine (anticancer and antibacterial activities). What makes these systems particularly captivating is their highly adaptable topological structure, combined with the versatile functionalization methods and consequently their precise design and control, which transfers into a wide range of applications. In our comprehensive review, we focus on the exploration of their intricate structural characteristics which play a pivotal role in their functional properties. Moreover, the exciting and promising applications of WD POMs across various areas of science disciplines are highlighted. Our aim is to shed light on the current state of the art, identify emerging trends, and provide insights into the potential future directions of WD POM research, which are still being expanded, especially given the rapid development and continuous progress in the design of novel WD POM subunit functionalities. By doing so, we hope to contribute to a better understanding of these remarkable materials and inspire further innovation in their utilization.</p></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":null,"pages":null},"PeriodicalIF":20.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010854524004375/pdfft?md5=b1da8f3639d3caebcdb9900319da4e88&pid=1-s2.0-S0010854524004375-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Overview of Wells-Dawson Polyoxometalates: from structure and functionalization to application\",\"authors\":\"\",\"doi\":\"10.1016/j.ccr.2024.216091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wells-Dawson polyoxometalates (WD POMs) are an important subgroup within the diverse family of POMs. In the last two decades, there has been remarkable progress in the structure modification and post-functionalization of WD POMs, which has unlocked their enormous potential across various domains, including energy materials, catalysis (photocatalysis, electrocatalysis), functional materials (sensors, optical materials, electrochromic materials, magnetic materials) or biology/medicine (anticancer and antibacterial activities). What makes these systems particularly captivating is their highly adaptable topological structure, combined with the versatile functionalization methods and consequently their precise design and control, which transfers into a wide range of applications. In our comprehensive review, we focus on the exploration of their intricate structural characteristics which play a pivotal role in their functional properties. Moreover, the exciting and promising applications of WD POMs across various areas of science disciplines are highlighted. Our aim is to shed light on the current state of the art, identify emerging trends, and provide insights into the potential future directions of WD POM research, which are still being expanded, especially given the rapid development and continuous progress in the design of novel WD POM subunit functionalities. By doing so, we hope to contribute to a better understanding of these remarkable materials and inspire further innovation in their utilization.</p></div>\",\"PeriodicalId\":289,\"journal\":{\"name\":\"Coordination Chemistry Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":20.3000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0010854524004375/pdfft?md5=b1da8f3639d3caebcdb9900319da4e88&pid=1-s2.0-S0010854524004375-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coordination Chemistry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010854524004375\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854524004375","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Overview of Wells-Dawson Polyoxometalates: from structure and functionalization to application
Wells-Dawson polyoxometalates (WD POMs) are an important subgroup within the diverse family of POMs. In the last two decades, there has been remarkable progress in the structure modification and post-functionalization of WD POMs, which has unlocked their enormous potential across various domains, including energy materials, catalysis (photocatalysis, electrocatalysis), functional materials (sensors, optical materials, electrochromic materials, magnetic materials) or biology/medicine (anticancer and antibacterial activities). What makes these systems particularly captivating is their highly adaptable topological structure, combined with the versatile functionalization methods and consequently their precise design and control, which transfers into a wide range of applications. In our comprehensive review, we focus on the exploration of their intricate structural characteristics which play a pivotal role in their functional properties. Moreover, the exciting and promising applications of WD POMs across various areas of science disciplines are highlighted. Our aim is to shed light on the current state of the art, identify emerging trends, and provide insights into the potential future directions of WD POM research, which are still being expanded, especially given the rapid development and continuous progress in the design of novel WD POM subunit functionalities. By doing so, we hope to contribute to a better understanding of these remarkable materials and inspire further innovation in their utilization.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.