具有恒定延迟的刚性微分方程的显式指数罗森布洛克方法的稳定性分析

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Rui Zhan, Jinwei Fang
{"title":"具有恒定延迟的刚性微分方程的显式指数罗森布洛克方法的稳定性分析","authors":"Rui Zhan,&nbsp;Jinwei Fang","doi":"10.1016/j.amc.2024.128978","DOIUrl":null,"url":null,"abstract":"<div><p>Delay differential equations have been used to model numerous phenomena in nature. We extend the previous work of one of the authors to analyze the stability properties of the explicit exponential Rosenbrock methods for stiff differential equations with constant delay. We first derive sufficient conditions so that the exponential Rosenbrock methods satisfy the desired stability property. We accomplish this without relying on some extreme constraints, which are usually necessary in stability analysis. Then, with the aid of the integral form of the method coefficients, we provide a simple stability criterion that can be easily verified. We also present a theorem on the order barrier for the proposed methods, stating that there is no method of order five or higher that satisfies the simple criterion. Numerical tests are carried out to validate the theoretical results.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability analysis of explicit exponential Rosenbrock methods for stiff differential equations with constant delay\",\"authors\":\"Rui Zhan,&nbsp;Jinwei Fang\",\"doi\":\"10.1016/j.amc.2024.128978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Delay differential equations have been used to model numerous phenomena in nature. We extend the previous work of one of the authors to analyze the stability properties of the explicit exponential Rosenbrock methods for stiff differential equations with constant delay. We first derive sufficient conditions so that the exponential Rosenbrock methods satisfy the desired stability property. We accomplish this without relying on some extreme constraints, which are usually necessary in stability analysis. Then, with the aid of the integral form of the method coefficients, we provide a simple stability criterion that can be easily verified. We also present a theorem on the order barrier for the proposed methods, stating that there is no method of order five or higher that satisfies the simple criterion. Numerical tests are carried out to validate the theoretical results.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324004399\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324004399","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

延迟微分方程已被用于模拟自然界的许多现象。我们扩展了其中一位作者以前的工作,分析了具有恒定延迟的刚性微分方程的显式指数 Rosenbrock 方法的稳定性。我们首先推导出充分条件,使指数罗森布洛克方法满足所需的稳定性。我们无需依赖一些极端约束条件就能做到这一点,而这些约束条件通常是稳定性分析中所必需的。然后,借助方法系数的积分形式,我们提供了一个易于验证的简单稳定性准则。我们还提出了一个关于所提方法阶数障碍的定理,指出不存在满足该简单准则的五阶或更高阶的方法。我们还进行了数值测试,以验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability analysis of explicit exponential Rosenbrock methods for stiff differential equations with constant delay

Delay differential equations have been used to model numerous phenomena in nature. We extend the previous work of one of the authors to analyze the stability properties of the explicit exponential Rosenbrock methods for stiff differential equations with constant delay. We first derive sufficient conditions so that the exponential Rosenbrock methods satisfy the desired stability property. We accomplish this without relying on some extreme constraints, which are usually necessary in stability analysis. Then, with the aid of the integral form of the method coefficients, we provide a simple stability criterion that can be easily verified. We also present a theorem on the order barrier for the proposed methods, stating that there is no method of order five or higher that satisfies the simple criterion. Numerical tests are carried out to validate the theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信