{"title":"反馈驱动,衍射无限","authors":"Fatih Ömer Ilday","doi":"10.1038/s41566-024-01485-0","DOIUrl":null,"url":null,"abstract":"By exploiting nonlinear feedback arising from the interaction of ultrafast laser pulses, self-organized nanolines that appear to defy the limits of diffraction are shown to cut, dice, and structure optical materials, fabricating true zero-order sapphire waveplates and crystalline micro-prisms.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 8","pages":"771-772"},"PeriodicalIF":32.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Driven by feedback, unlimited by diffraction\",\"authors\":\"Fatih Ömer Ilday\",\"doi\":\"10.1038/s41566-024-01485-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By exploiting nonlinear feedback arising from the interaction of ultrafast laser pulses, self-organized nanolines that appear to defy the limits of diffraction are shown to cut, dice, and structure optical materials, fabricating true zero-order sapphire waveplates and crystalline micro-prisms.\",\"PeriodicalId\":18926,\"journal\":{\"name\":\"Nature Photonics\",\"volume\":\"18 8\",\"pages\":\"771-772\"},\"PeriodicalIF\":32.3000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41566-024-01485-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-024-01485-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
By exploiting nonlinear feedback arising from the interaction of ultrafast laser pulses, self-organized nanolines that appear to defy the limits of diffraction are shown to cut, dice, and structure optical materials, fabricating true zero-order sapphire waveplates and crystalline micro-prisms.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.