低双折射聚苯乙烯在高分辨率成像透镜系统中的应用

IF 1.1 4区 物理与天体物理 Q4 OPTICS
Masaki Tamura, Naruki Kurokawa, Atsushi Hotta
{"title":"低双折射聚苯乙烯在高分辨率成像透镜系统中的应用","authors":"Masaki Tamura, Naruki Kurokawa, Atsushi Hotta","doi":"10.1007/s10043-024-00900-9","DOIUrl":null,"url":null,"abstract":"<p>Polystyrene (PS) has not been much used as an optical material due to the considerably high birefringence of PS. For the extensive use of PS in the imaging-lens systems, lower birefringence should be attained for the enhancement of the resolution. Previously, we have developed PS with extremely low birefringence (LB-PS) even when the molecular chain orientation of PS occurred. It indicates that PS may now become an effective material with excellent properties for optical lenses. In this paper, we compared the birefringence of our developed LB-PS with ones of commercial optical polymers that are most commonly utilized in imaging-lens systems. It was confirmed that the birefringence of LB-PS was comparable or even better than that of the commercial ones with high resolution. By designing an imaging-lens system, it was also confirmed that employing PS with the Abbe number of 31.5 could be highly effective in compensating for chromatic aberration as well as obtaining high optical resolution. Moreover, the resolution performance of several lens systems was calculated, analyzed, and compared by considering the birefringence of cyclo-olefin polymer (COP), normal PS, and LB-PS. It was found that LB-PS could maintain high resolution, while normal PS with high birefringence exhibited significant decrease in resolution. It was also found that LB-PS generated higher resolution than COP. All these results revealed that LB-PS could be an excellent optical material to compensate for the chromatic aberration of lens systems, leading to the enhancement of the actual resolution performance. It was, therefore, expected that LB-PS could contribute to improving the resolution performance of smartphone cameras and security cameras.</p>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of low-birefringence polystyrene in high-resolution imaging-lens systems\",\"authors\":\"Masaki Tamura, Naruki Kurokawa, Atsushi Hotta\",\"doi\":\"10.1007/s10043-024-00900-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Polystyrene (PS) has not been much used as an optical material due to the considerably high birefringence of PS. For the extensive use of PS in the imaging-lens systems, lower birefringence should be attained for the enhancement of the resolution. Previously, we have developed PS with extremely low birefringence (LB-PS) even when the molecular chain orientation of PS occurred. It indicates that PS may now become an effective material with excellent properties for optical lenses. In this paper, we compared the birefringence of our developed LB-PS with ones of commercial optical polymers that are most commonly utilized in imaging-lens systems. It was confirmed that the birefringence of LB-PS was comparable or even better than that of the commercial ones with high resolution. By designing an imaging-lens system, it was also confirmed that employing PS with the Abbe number of 31.5 could be highly effective in compensating for chromatic aberration as well as obtaining high optical resolution. Moreover, the resolution performance of several lens systems was calculated, analyzed, and compared by considering the birefringence of cyclo-olefin polymer (COP), normal PS, and LB-PS. It was found that LB-PS could maintain high resolution, while normal PS with high birefringence exhibited significant decrease in resolution. It was also found that LB-PS generated higher resolution than COP. All these results revealed that LB-PS could be an excellent optical material to compensate for the chromatic aberration of lens systems, leading to the enhancement of the actual resolution performance. It was, therefore, expected that LB-PS could contribute to improving the resolution performance of smartphone cameras and security cameras.</p>\",\"PeriodicalId\":722,\"journal\":{\"name\":\"Optical Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Review\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s10043-024-00900-9\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Review","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s10043-024-00900-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

由于聚苯乙烯(PS)具有相当高的双折射,因此一直未被广泛用作光学材料。要在成像透镜系统中广泛使用 PS,就必须降低双折射,以提高分辨率。在此之前,我们已经开发出了具有极低双折射的 PS(LB-PS),即使在 PS 分子链取向的情况下也是如此。这表明 PS 有可能成为一种性能优异的有效光学透镜材料。在本文中,我们将所开发的 LB-PS 的双折射与成像透镜系统中最常用的商用光学聚合物的双折射进行了比较。结果表明,LB-PS 的双折射性能与高分辨率的商用光学聚合物相当,甚至更好。通过设计成像透镜系统,还证实使用阿贝数为 31.5 的 PS 可以非常有效地补偿色差并获得高光学分辨率。此外,通过考虑环烯烃聚合物(COP)、普通 PS 和 LB-PS 的双折射,计算、分析和比较了几种透镜系统的分辨率性能。结果发现,LB-PS 可以保持较高的分辨率,而双折射较高的普通 PS 则会显著降低分辨率。研究还发现,LB-PS 比 COP 产生更高的分辨率。所有这些结果都表明,枸杞多糖是一种出色的光学材料,可用于补偿透镜系统的色差,从而提高实际分辨率。因此,预计枸杞多糖可有助于提高智能手机摄像头和安防摄像头的分辨率性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Application of low-birefringence polystyrene in high-resolution imaging-lens systems

Application of low-birefringence polystyrene in high-resolution imaging-lens systems

Polystyrene (PS) has not been much used as an optical material due to the considerably high birefringence of PS. For the extensive use of PS in the imaging-lens systems, lower birefringence should be attained for the enhancement of the resolution. Previously, we have developed PS with extremely low birefringence (LB-PS) even when the molecular chain orientation of PS occurred. It indicates that PS may now become an effective material with excellent properties for optical lenses. In this paper, we compared the birefringence of our developed LB-PS with ones of commercial optical polymers that are most commonly utilized in imaging-lens systems. It was confirmed that the birefringence of LB-PS was comparable or even better than that of the commercial ones with high resolution. By designing an imaging-lens system, it was also confirmed that employing PS with the Abbe number of 31.5 could be highly effective in compensating for chromatic aberration as well as obtaining high optical resolution. Moreover, the resolution performance of several lens systems was calculated, analyzed, and compared by considering the birefringence of cyclo-olefin polymer (COP), normal PS, and LB-PS. It was found that LB-PS could maintain high resolution, while normal PS with high birefringence exhibited significant decrease in resolution. It was also found that LB-PS generated higher resolution than COP. All these results revealed that LB-PS could be an excellent optical material to compensate for the chromatic aberration of lens systems, leading to the enhancement of the actual resolution performance. It was, therefore, expected that LB-PS could contribute to improving the resolution performance of smartphone cameras and security cameras.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical Review
Optical Review 物理-光学
CiteScore
2.30
自引率
0.00%
发文量
62
审稿时长
2 months
期刊介绍: Optical Review is an international journal published by the Optical Society of Japan. The scope of the journal is: General and physical optics; Quantum optics and spectroscopy; Information optics; Photonics and optoelectronics; Biomedical photonics and biological optics; Lasers; Nonlinear optics; Optical systems and technologies; Optical materials and manufacturing technologies; Vision; Infrared and short wavelength optics; Cross-disciplinary areas such as environmental, energy, food, agriculture and space technologies; Other optical methods and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信