{"title":"同质性对临界点附近行为-疾病动态耦合的影响","authors":"Zitao He, Chris T. Bauch","doi":"10.1016/j.mbs.2024.109264","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the interplay between social activities and disease dynamics is crucial for effective public health interventions. Recent studies using coupled behavior-disease models assumed homogeneous populations. However, heterogeneity in population, such as different social groups, cannot be ignored. In this study, we divided the population into social media users and non-users, and investigated the impact of homophily (the tendency for individuals to associate with others similar to themselves) and online events on disease dynamics. Our results reveal that homophily hinders the adoption of vaccinating strategies, hastening the approach to a tipping point after which the population converges to an endemic equilibrium with no vaccine uptake. Furthermore, we find that online events can significantly influence disease dynamics, with early discussions on social media platforms serving as an early warning signal of potential disease outbreaks. Our model provides insights into the mechanisms underlying these phenomena and underscores the importance of considering homophily in disease modeling and public health strategies.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S002555642400124X/pdfft?md5=74385800e80062ca5184deb43245a2fe&pid=1-s2.0-S002555642400124X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of homophily on coupled behavior-disease dynamics near a tipping point\",\"authors\":\"Zitao He, Chris T. Bauch\",\"doi\":\"10.1016/j.mbs.2024.109264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding the interplay between social activities and disease dynamics is crucial for effective public health interventions. Recent studies using coupled behavior-disease models assumed homogeneous populations. However, heterogeneity in population, such as different social groups, cannot be ignored. In this study, we divided the population into social media users and non-users, and investigated the impact of homophily (the tendency for individuals to associate with others similar to themselves) and online events on disease dynamics. Our results reveal that homophily hinders the adoption of vaccinating strategies, hastening the approach to a tipping point after which the population converges to an endemic equilibrium with no vaccine uptake. Furthermore, we find that online events can significantly influence disease dynamics, with early discussions on social media platforms serving as an early warning signal of potential disease outbreaks. Our model provides insights into the mechanisms underlying these phenomena and underscores the importance of considering homophily in disease modeling and public health strategies.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S002555642400124X/pdfft?md5=74385800e80062ca5184deb43245a2fe&pid=1-s2.0-S002555642400124X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002555642400124X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002555642400124X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of homophily on coupled behavior-disease dynamics near a tipping point
Understanding the interplay between social activities and disease dynamics is crucial for effective public health interventions. Recent studies using coupled behavior-disease models assumed homogeneous populations. However, heterogeneity in population, such as different social groups, cannot be ignored. In this study, we divided the population into social media users and non-users, and investigated the impact of homophily (the tendency for individuals to associate with others similar to themselves) and online events on disease dynamics. Our results reveal that homophily hinders the adoption of vaccinating strategies, hastening the approach to a tipping point after which the population converges to an endemic equilibrium with no vaccine uptake. Furthermore, we find that online events can significantly influence disease dynamics, with early discussions on social media platforms serving as an early warning signal of potential disease outbreaks. Our model provides insights into the mechanisms underlying these phenomena and underscores the importance of considering homophily in disease modeling and public health strategies.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.