{"title":"谷胱甘肽杂化聚(β-氨基酯)-质粒纳米颗粒,用于增强基因传递和生物安全性。","authors":"Songwei Tan, Caiyan Yuan, Yuhe Zhu, Shuangyan Chang, Qianru Li, Jiahui Ding, Xueqin Gao, Rui Tian, Zhiqiang Han, Zheng Hu","doi":"10.1016/j.jare.2024.07.038","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>CRISPR/Cas9 gene editing technology has significantly advanced gene therapy, with gene vectors being one of the key factors for its success. Poly (beta-amino ester) (PBAE), a distinguished non-viral cationic gene vector, is known to elevate intracellular reactive oxygen species (ROS) levels, which may cause cytotoxicity and, consequently, impact gene transfection efficacy (T.E.).</p><p><strong>Objectives: </strong>To develop a simple but efficient strategy to improve the gene delivery ability and biosafety of PBAE both in vivo and in vitro.</p><p><strong>Methods: </strong>We used glutathione (GSH), a clinically utilized drug with capability to modulating intracellular ROS level, to prepare a hybrid system with PBAE-plasmid nanoparticles (NPs). This system was characterized by flow cytometry, RNA-seq, Polymerase Chain Reaction (PCR) and Sanger sequencing in vitro, and its safety and efficacy in vivo was evaluated by imaging, PCR, Sanger sequencing and histology analysis.</p><p><strong>Results: </strong>The particle size of GSH-PBAE-plasmid NPs were 168.31 nm with a ζ-potential of 15.21 mV. An enhancement in T.E. and gene editing efficiency, ranging from 10 % to 100 %, was observed compared to GSH-free PBAE-plasmid NPs in various cell lines. In vitro results proved that GSH-PBAE-plasmid NPs reduced intracellular ROS levels by 25 %-40 %, decreased the total number of upregulated/downregulated genes from 4,952 to 789, and significantly avoided the disturbance in gene expression related to cellular oxidative stress-response and cell growth regulation signaling pathway compared to PBAE-plasmid NPs. They also demonstrated lower impact on the cell cycle, slighter hemolysis, and higher cell viability after gene transfection. Furthermore, GSH hybrid PBAE-plasmid NPs exhibited superior safety and improved tumor suppression ability in an Epstein-Barr virus (EBV)-infected murine tumor model, via targeting cleavage the EBV related oncogene by delivering CRISPR/Cas9 gene editing system and down-regulating the expression levels. This simple but effective strategy is expected to promote clinical applications of non-viral vector gene delivery.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glutathione hybrid poly (beta-amino ester)-plasmid nanoparticles for enhancing gene delivery and biosafety.\",\"authors\":\"Songwei Tan, Caiyan Yuan, Yuhe Zhu, Shuangyan Chang, Qianru Li, Jiahui Ding, Xueqin Gao, Rui Tian, Zhiqiang Han, Zheng Hu\",\"doi\":\"10.1016/j.jare.2024.07.038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>CRISPR/Cas9 gene editing technology has significantly advanced gene therapy, with gene vectors being one of the key factors for its success. Poly (beta-amino ester) (PBAE), a distinguished non-viral cationic gene vector, is known to elevate intracellular reactive oxygen species (ROS) levels, which may cause cytotoxicity and, consequently, impact gene transfection efficacy (T.E.).</p><p><strong>Objectives: </strong>To develop a simple but efficient strategy to improve the gene delivery ability and biosafety of PBAE both in vivo and in vitro.</p><p><strong>Methods: </strong>We used glutathione (GSH), a clinically utilized drug with capability to modulating intracellular ROS level, to prepare a hybrid system with PBAE-plasmid nanoparticles (NPs). This system was characterized by flow cytometry, RNA-seq, Polymerase Chain Reaction (PCR) and Sanger sequencing in vitro, and its safety and efficacy in vivo was evaluated by imaging, PCR, Sanger sequencing and histology analysis.</p><p><strong>Results: </strong>The particle size of GSH-PBAE-plasmid NPs were 168.31 nm with a ζ-potential of 15.21 mV. An enhancement in T.E. and gene editing efficiency, ranging from 10 % to 100 %, was observed compared to GSH-free PBAE-plasmid NPs in various cell lines. In vitro results proved that GSH-PBAE-plasmid NPs reduced intracellular ROS levels by 25 %-40 %, decreased the total number of upregulated/downregulated genes from 4,952 to 789, and significantly avoided the disturbance in gene expression related to cellular oxidative stress-response and cell growth regulation signaling pathway compared to PBAE-plasmid NPs. They also demonstrated lower impact on the cell cycle, slighter hemolysis, and higher cell viability after gene transfection. Furthermore, GSH hybrid PBAE-plasmid NPs exhibited superior safety and improved tumor suppression ability in an Epstein-Barr virus (EBV)-infected murine tumor model, via targeting cleavage the EBV related oncogene by delivering CRISPR/Cas9 gene editing system and down-regulating the expression levels. This simple but effective strategy is expected to promote clinical applications of non-viral vector gene delivery.</p>\",\"PeriodicalId\":94063,\"journal\":{\"name\":\"Journal of advanced research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of advanced research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jare.2024.07.038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of advanced research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jare.2024.07.038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Glutathione hybrid poly (beta-amino ester)-plasmid nanoparticles for enhancing gene delivery and biosafety.
Introduction: CRISPR/Cas9 gene editing technology has significantly advanced gene therapy, with gene vectors being one of the key factors for its success. Poly (beta-amino ester) (PBAE), a distinguished non-viral cationic gene vector, is known to elevate intracellular reactive oxygen species (ROS) levels, which may cause cytotoxicity and, consequently, impact gene transfection efficacy (T.E.).
Objectives: To develop a simple but efficient strategy to improve the gene delivery ability and biosafety of PBAE both in vivo and in vitro.
Methods: We used glutathione (GSH), a clinically utilized drug with capability to modulating intracellular ROS level, to prepare a hybrid system with PBAE-plasmid nanoparticles (NPs). This system was characterized by flow cytometry, RNA-seq, Polymerase Chain Reaction (PCR) and Sanger sequencing in vitro, and its safety and efficacy in vivo was evaluated by imaging, PCR, Sanger sequencing and histology analysis.
Results: The particle size of GSH-PBAE-plasmid NPs were 168.31 nm with a ζ-potential of 15.21 mV. An enhancement in T.E. and gene editing efficiency, ranging from 10 % to 100 %, was observed compared to GSH-free PBAE-plasmid NPs in various cell lines. In vitro results proved that GSH-PBAE-plasmid NPs reduced intracellular ROS levels by 25 %-40 %, decreased the total number of upregulated/downregulated genes from 4,952 to 789, and significantly avoided the disturbance in gene expression related to cellular oxidative stress-response and cell growth regulation signaling pathway compared to PBAE-plasmid NPs. They also demonstrated lower impact on the cell cycle, slighter hemolysis, and higher cell viability after gene transfection. Furthermore, GSH hybrid PBAE-plasmid NPs exhibited superior safety and improved tumor suppression ability in an Epstein-Barr virus (EBV)-infected murine tumor model, via targeting cleavage the EBV related oncogene by delivering CRISPR/Cas9 gene editing system and down-regulating the expression levels. This simple but effective strategy is expected to promote clinical applications of non-viral vector gene delivery.