{"title":"冲动行为背后的谷氨酸能系统异常:临床和临床前研究的启示。","authors":"Justin R. Yates","doi":"10.1016/j.pnpbp.2024.111107","DOIUrl":null,"url":null,"abstract":"<div><p>Impulsivity is a broad construct that often refers to one of several distinct behaviors and can be measured with self-report questionnaires and behavioral paradigms. Several psychiatric conditions are characterized by one or more forms of impulsive behavior, most notably the impulsive/hyperactive subtype of attention-deficit/hyperactivity disorder (ADHD), mood disorders, and substance use disorders. Monoaminergic neurotransmitters are known to mediate impulsive behaviors and are implicated in various psychiatric conditions. However, growing evidence suggests that glutamate, the major excitatory neurotransmitter of the mammalian brain, regulates important functions that become dysregulated in conditions like ADHD. The purpose of the current review is to discuss clinical and preclinical evidence linking glutamate to separate aspects of impulsivity, specifically motor impulsivity, impulsive choice, and affective impulsivity. Hyperactive glutamatergic activity in the corticostriatal and the cerebro-cerebellar pathways are major determinants of motor impulsivity. Conversely, hypoactive glutamatergic activity in frontal cortical areas and hippocampus and hyperactive glutamatergic activity in anterior cingulate cortex and nucleus accumbens mediate impulsive choice. Affective impulsivity is controlled by similar glutamatergic dysfunction observed for motor impulsivity, except a hyperactive limbic system is also involved. Loss of glutamate homeostasis in prefrontal and nucleus accumbens may contribute to motor impulsivity/affective impulsivity and impulsive choice, respectively. These results are important as they can lead to novel treatments for those with a condition characterized by increased impulsivity that are resistant to conventional treatments.</p></div>","PeriodicalId":54549,"journal":{"name":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","volume":"135 ","pages":"Article 111107"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aberrant glutamatergic systems underlying impulsive behaviors: Insights from clinical and preclinical research\",\"authors\":\"Justin R. Yates\",\"doi\":\"10.1016/j.pnpbp.2024.111107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Impulsivity is a broad construct that often refers to one of several distinct behaviors and can be measured with self-report questionnaires and behavioral paradigms. Several psychiatric conditions are characterized by one or more forms of impulsive behavior, most notably the impulsive/hyperactive subtype of attention-deficit/hyperactivity disorder (ADHD), mood disorders, and substance use disorders. Monoaminergic neurotransmitters are known to mediate impulsive behaviors and are implicated in various psychiatric conditions. However, growing evidence suggests that glutamate, the major excitatory neurotransmitter of the mammalian brain, regulates important functions that become dysregulated in conditions like ADHD. The purpose of the current review is to discuss clinical and preclinical evidence linking glutamate to separate aspects of impulsivity, specifically motor impulsivity, impulsive choice, and affective impulsivity. Hyperactive glutamatergic activity in the corticostriatal and the cerebro-cerebellar pathways are major determinants of motor impulsivity. Conversely, hypoactive glutamatergic activity in frontal cortical areas and hippocampus and hyperactive glutamatergic activity in anterior cingulate cortex and nucleus accumbens mediate impulsive choice. Affective impulsivity is controlled by similar glutamatergic dysfunction observed for motor impulsivity, except a hyperactive limbic system is also involved. Loss of glutamate homeostasis in prefrontal and nucleus accumbens may contribute to motor impulsivity/affective impulsivity and impulsive choice, respectively. These results are important as they can lead to novel treatments for those with a condition characterized by increased impulsivity that are resistant to conventional treatments.</p></div>\",\"PeriodicalId\":54549,\"journal\":{\"name\":\"Progress in Neuro-Psychopharmacology & Biological Psychiatry\",\"volume\":\"135 \",\"pages\":\"Article 111107\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Neuro-Psychopharmacology & Biological Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278584624001751\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278584624001751","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Aberrant glutamatergic systems underlying impulsive behaviors: Insights from clinical and preclinical research
Impulsivity is a broad construct that often refers to one of several distinct behaviors and can be measured with self-report questionnaires and behavioral paradigms. Several psychiatric conditions are characterized by one or more forms of impulsive behavior, most notably the impulsive/hyperactive subtype of attention-deficit/hyperactivity disorder (ADHD), mood disorders, and substance use disorders. Monoaminergic neurotransmitters are known to mediate impulsive behaviors and are implicated in various psychiatric conditions. However, growing evidence suggests that glutamate, the major excitatory neurotransmitter of the mammalian brain, regulates important functions that become dysregulated in conditions like ADHD. The purpose of the current review is to discuss clinical and preclinical evidence linking glutamate to separate aspects of impulsivity, specifically motor impulsivity, impulsive choice, and affective impulsivity. Hyperactive glutamatergic activity in the corticostriatal and the cerebro-cerebellar pathways are major determinants of motor impulsivity. Conversely, hypoactive glutamatergic activity in frontal cortical areas and hippocampus and hyperactive glutamatergic activity in anterior cingulate cortex and nucleus accumbens mediate impulsive choice. Affective impulsivity is controlled by similar glutamatergic dysfunction observed for motor impulsivity, except a hyperactive limbic system is also involved. Loss of glutamate homeostasis in prefrontal and nucleus accumbens may contribute to motor impulsivity/affective impulsivity and impulsive choice, respectively. These results are important as they can lead to novel treatments for those with a condition characterized by increased impulsivity that are resistant to conventional treatments.
期刊介绍:
Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international and multidisciplinary journal which aims to ensure the rapid publication of authoritative reviews and research papers dealing with experimental and clinical aspects of neuro-psychopharmacology and biological psychiatry. Issues of the journal are regularly devoted wholly in or in part to a topical subject.
Progress in Neuro-Psychopharmacology & Biological Psychiatry does not publish work on the actions of biological extracts unless the pharmacological active molecular substrate and/or specific receptor binding properties of the extract compounds are elucidated.