高阶特征对 CT 非小细胞肺癌放射组学研究性能的影响。

IF 1.8 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
{"title":"高阶特征对 CT 非小细胞肺癌放射组学研究性能的影响。","authors":"","doi":"10.1016/j.clinimag.2024.110244","DOIUrl":null,"url":null,"abstract":"<div><p>High-order radiomic features have been shown to produce high performance models in a variety of scenarios. However, models trained without high-order features have shown similar performance, raising the question of whether high-order features are worth including given their increased computational burden. This comparative study investigates the impact of high-order features on model performance in CT-based Non-Small Cell Lung Cancer (NSCLC) and the potential uncertainty regarding their application in machine learning. Three categories of features were retrospectively retrieved from CT images of 347 NSCLC patients: first- and second-order statistical features, morphological features and transform (high-order) features. From these, three datasets were constructed: a “low-order” dataset (Lo) which included the first-order, second-order, and morphological features, a high-order dataset (Hi), and a combined dataset (Combo). A diverse selection of datasets, feature selection methods, and predictive models were included for the uncertainty analysis, with two-year survival as the study endpoint. AUC values were calculated for comparisons and Kruskal-Wallis testing was performed to determine significant differences. The Hi (AUC: 0.41–0.62) and Combo (AUC: 0.41–0.62) datasets generate significantly (<em>P</em> &lt; 0.01) higher model performance than the Lo dataset (AUC: 0.42–0.58). High-order features are selected more often than low-order features for model training, comprising 87 % of selected features in the Combo dataset. High-order features are a source of data that can improve machine learning model performance. However, its impact strongly depends on various factors that may lead to inconsistent results. A clear approach to incorporate high-order features in radiomic studies requires further investigation.</p></div>","PeriodicalId":50680,"journal":{"name":"Clinical Imaging","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of high-order features on performance of radiomics studies in CT non-small cell lung cancer\",\"authors\":\"\",\"doi\":\"10.1016/j.clinimag.2024.110244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-order radiomic features have been shown to produce high performance models in a variety of scenarios. However, models trained without high-order features have shown similar performance, raising the question of whether high-order features are worth including given their increased computational burden. This comparative study investigates the impact of high-order features on model performance in CT-based Non-Small Cell Lung Cancer (NSCLC) and the potential uncertainty regarding their application in machine learning. Three categories of features were retrospectively retrieved from CT images of 347 NSCLC patients: first- and second-order statistical features, morphological features and transform (high-order) features. From these, three datasets were constructed: a “low-order” dataset (Lo) which included the first-order, second-order, and morphological features, a high-order dataset (Hi), and a combined dataset (Combo). A diverse selection of datasets, feature selection methods, and predictive models were included for the uncertainty analysis, with two-year survival as the study endpoint. AUC values were calculated for comparisons and Kruskal-Wallis testing was performed to determine significant differences. The Hi (AUC: 0.41–0.62) and Combo (AUC: 0.41–0.62) datasets generate significantly (<em>P</em> &lt; 0.01) higher model performance than the Lo dataset (AUC: 0.42–0.58). High-order features are selected more often than low-order features for model training, comprising 87 % of selected features in the Combo dataset. High-order features are a source of data that can improve machine learning model performance. However, its impact strongly depends on various factors that may lead to inconsistent results. A clear approach to incorporate high-order features in radiomic studies requires further investigation.</p></div>\",\"PeriodicalId\":50680,\"journal\":{\"name\":\"Clinical Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0899707124001748\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0899707124001748","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

高阶辐射组学特征已被证明能在各种情况下生成高性能模型。然而,在没有高阶特征的情况下训练出来的模型也显示出类似的性能,这就提出了一个问题:考虑到高阶特征会增加计算负担,是否值得加入高阶特征。本比较研究调查了高阶特征对基于 CT 的非小细胞肺癌(NSCLC)模型性能的影响,以及其在机器学习中应用的潜在不确定性。从 347 名 NSCLC 患者的 CT 图像中回顾性地检索了三类特征:一阶和二阶统计特征、形态特征和变换(高阶)特征。由此构建了三个数据集:包括一阶、二阶和形态特征的 "低阶 "数据集(Lo)、高阶数据集(Hi)和组合数据集(Combo)。不确定性分析中包含了多种数据集、特征选择方法和预测模型,并以两年生存率作为研究终点。计算 AUC 值进行比较,并进行 Kruskal-Wallis 检验以确定显著差异。Hi(AUC:0.41-0.62)和 Combo(AUC:0.41-0.62)数据集产生显著差异(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The impact of high-order features on performance of radiomics studies in CT non-small cell lung cancer

High-order radiomic features have been shown to produce high performance models in a variety of scenarios. However, models trained without high-order features have shown similar performance, raising the question of whether high-order features are worth including given their increased computational burden. This comparative study investigates the impact of high-order features on model performance in CT-based Non-Small Cell Lung Cancer (NSCLC) and the potential uncertainty regarding their application in machine learning. Three categories of features were retrospectively retrieved from CT images of 347 NSCLC patients: first- and second-order statistical features, morphological features and transform (high-order) features. From these, three datasets were constructed: a “low-order” dataset (Lo) which included the first-order, second-order, and morphological features, a high-order dataset (Hi), and a combined dataset (Combo). A diverse selection of datasets, feature selection methods, and predictive models were included for the uncertainty analysis, with two-year survival as the study endpoint. AUC values were calculated for comparisons and Kruskal-Wallis testing was performed to determine significant differences. The Hi (AUC: 0.41–0.62) and Combo (AUC: 0.41–0.62) datasets generate significantly (P < 0.01) higher model performance than the Lo dataset (AUC: 0.42–0.58). High-order features are selected more often than low-order features for model training, comprising 87 % of selected features in the Combo dataset. High-order features are a source of data that can improve machine learning model performance. However, its impact strongly depends on various factors that may lead to inconsistent results. A clear approach to incorporate high-order features in radiomic studies requires further investigation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical Imaging
Clinical Imaging 医学-核医学
CiteScore
4.60
自引率
0.00%
发文量
265
审稿时长
35 days
期刊介绍: The mission of Clinical Imaging is to publish, in a timely manner, the very best radiology research from the United States and around the world with special attention to the impact of medical imaging on patient care. The journal''s publications cover all imaging modalities, radiology issues related to patients, policy and practice improvements, and clinically-oriented imaging physics and informatics. The journal is a valuable resource for practicing radiologists, radiologists-in-training and other clinicians with an interest in imaging. Papers are carefully peer-reviewed and selected by our experienced subject editors who are leading experts spanning the range of imaging sub-specialties, which include: -Body Imaging- Breast Imaging- Cardiothoracic Imaging- Imaging Physics and Informatics- Molecular Imaging and Nuclear Medicine- Musculoskeletal and Emergency Imaging- Neuroradiology- Practice, Policy & Education- Pediatric Imaging- Vascular and Interventional Radiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信