阿哌沙班固体脂质纳米颗粒的配方优化与表征

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Laukik Mulay, Namita Hegde, Abhishek Kanugo
{"title":"阿哌沙班固体脂质纳米颗粒的配方优化与表征","authors":"Laukik Mulay, Namita Hegde, Abhishek Kanugo","doi":"10.2174/0118722105284862240506045944","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Unpredictable situations such as clotting of blood, deep vein thrombosis, and pulmonary embolism arise in the body, which is the leading cause of mortality. Such conditions generally arise after surgery as well as after treatment with oral anticoagulant agents. Apixaban is a novel oral anticoagulant widely recommended for the prevention and treatment of strokes and blood clots suffering from nonvalvular atrial fibrillation by suppressing factor Xa. Apixaban has a log P of 2.71 with poor solubility and reported maximum bioavailability of approximately 50%.</p><p><strong>Objective: </strong>Hence, the current research mainly focused on the improvement of solubility, bioavailability, and therapeutic efficacy of Apixaban via solid lipid nanoparticles (SLN).</p><p><strong>Methods: </strong>The SLN was developed using the hot-homogenization method using a high-pressure homogenizer. The drug-lipid compatibility study was assessed by the FTIR, and the thermal analysis was performed using differential scanning calorimetry (DSC). During the scrutiny of lipids, the highest solubility of Apixaban was estimated in the glyceryl monostearate, hence selected for the formulation. Moreover, the colloidal solution was stabilized by the polyethylene glycol 200. The Design of Expert software (Version 13, Stat-Ease) was implemented for the optimization analysis by considering the 3-independent factors and 2-dependent parameters. The Patents on the SLN are Indian 202321053691, U.S. Patent, 10,973,798B2, U.S. Patent, U.S. Patent 2021/0069121A1, U.S. Patent 2022/0151945A1.</p><p><strong>Results: </strong>Box-Behnken design was applied along with ANOVA, which showed a p-value less than 0.05 for the dependent parameters such as particle size and entrapment efficiency (p-value: 0.0476 and 0.0379). The optimized batch F10 showed a particle size of 167.1 nm, -19.5 mV zeta potential, and an entrapment efficiency of 87.32%. The optimized batch F10 was lyophilized and analyzed by Scanning electron microscopy (SEM), which showed a particle size of 130 nm. The solid powder was filled into the capsule for oral delivery.</p><p><strong>Conclusion: </strong>The marked improvement in solubility and bioavailability was achieved with F10- loaded Apixaban via Solid lipid nanoparticles. Moreover, the sustained released profile also minimizes the unseen complications that occur due to the clotting of blood.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formulation Optimization and Characterization of Solid Lipid Nanoparticles of Apixaban.\",\"authors\":\"Laukik Mulay, Namita Hegde, Abhishek Kanugo\",\"doi\":\"10.2174/0118722105284862240506045944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Unpredictable situations such as clotting of blood, deep vein thrombosis, and pulmonary embolism arise in the body, which is the leading cause of mortality. Such conditions generally arise after surgery as well as after treatment with oral anticoagulant agents. Apixaban is a novel oral anticoagulant widely recommended for the prevention and treatment of strokes and blood clots suffering from nonvalvular atrial fibrillation by suppressing factor Xa. Apixaban has a log P of 2.71 with poor solubility and reported maximum bioavailability of approximately 50%.</p><p><strong>Objective: </strong>Hence, the current research mainly focused on the improvement of solubility, bioavailability, and therapeutic efficacy of Apixaban via solid lipid nanoparticles (SLN).</p><p><strong>Methods: </strong>The SLN was developed using the hot-homogenization method using a high-pressure homogenizer. The drug-lipid compatibility study was assessed by the FTIR, and the thermal analysis was performed using differential scanning calorimetry (DSC). During the scrutiny of lipids, the highest solubility of Apixaban was estimated in the glyceryl monostearate, hence selected for the formulation. Moreover, the colloidal solution was stabilized by the polyethylene glycol 200. The Design of Expert software (Version 13, Stat-Ease) was implemented for the optimization analysis by considering the 3-independent factors and 2-dependent parameters. The Patents on the SLN are Indian 202321053691, U.S. Patent, 10,973,798B2, U.S. Patent, U.S. Patent 2021/0069121A1, U.S. Patent 2022/0151945A1.</p><p><strong>Results: </strong>Box-Behnken design was applied along with ANOVA, which showed a p-value less than 0.05 for the dependent parameters such as particle size and entrapment efficiency (p-value: 0.0476 and 0.0379). The optimized batch F10 showed a particle size of 167.1 nm, -19.5 mV zeta potential, and an entrapment efficiency of 87.32%. The optimized batch F10 was lyophilized and analyzed by Scanning electron microscopy (SEM), which showed a particle size of 130 nm. The solid powder was filled into the capsule for oral delivery.</p><p><strong>Conclusion: </strong>The marked improvement in solubility and bioavailability was achieved with F10- loaded Apixaban via Solid lipid nanoparticles. Moreover, the sustained released profile also minimizes the unseen complications that occur due to the clotting of blood.</p>\",\"PeriodicalId\":49324,\"journal\":{\"name\":\"Recent Patents on Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Patents on Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2174/0118722105284862240506045944\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Patents on Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/0118722105284862240506045944","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

背景:人体中会出现血液凝固、深静脉血栓和肺栓塞等不可预测的情况,这是导致死亡的主要原因。这些情况通常发生在手术后以及口服抗凝剂治疗后。阿哌沙班是一种新型口服抗凝剂,通过抑制 Xa 因子,被广泛推荐用于预防和治疗非瓣膜性心房颤动引起的中风和血栓。阿哌沙班的溶解度对数值为 2.71,生物利用度较低,据报道最大生物利用度约为 50%:方法:利用高压均质机,采用热均质法研制出固体脂质纳米粒。傅立叶变换红外光谱(FTIR)评估了药物与脂质的相容性,差示扫描量热法(DSC)进行了热分析。在对脂质的研究过程中,阿哌沙班在单硬脂酸甘油酯中的溶解度最高,因此被选作制剂。此外,聚乙二醇 200 稳定了胶体溶液。采用专家设计软件(第 13 版,Stat-Ease)进行优化分析,考虑了 3 个独立因素和 2 个独立参数。有关 SLN 的专利有印度专利 202321053691、美国专利 10,973,798B2、美国专利 2021/0069121A1、美国专利 2022/0151945A1:结果表明,粒度和夹带效率等因果参数的 p 值小于 0.05(p 值分别为 0.0476 和 0.0379)。优化批次 F10 的粒径为 167.1 nm,zeta 电位为 -19.5 mV,包埋效率为 87.32%。将优化批次 F10 冻干并用扫描电子显微镜(SEM)分析,结果显示其粒径为 130 nm。固体粉末被填充到胶囊中,用于口服给药:结论:通过固体脂质纳米颗粒载入 F10 后,阿哌沙班的溶解度和生物利用度明显提高。此外,持续释放的特性还最大限度地减少了因血液凝固而导致的看不见的并发症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formulation Optimization and Characterization of Solid Lipid Nanoparticles of Apixaban.

Background: Unpredictable situations such as clotting of blood, deep vein thrombosis, and pulmonary embolism arise in the body, which is the leading cause of mortality. Such conditions generally arise after surgery as well as after treatment with oral anticoagulant agents. Apixaban is a novel oral anticoagulant widely recommended for the prevention and treatment of strokes and blood clots suffering from nonvalvular atrial fibrillation by suppressing factor Xa. Apixaban has a log P of 2.71 with poor solubility and reported maximum bioavailability of approximately 50%.

Objective: Hence, the current research mainly focused on the improvement of solubility, bioavailability, and therapeutic efficacy of Apixaban via solid lipid nanoparticles (SLN).

Methods: The SLN was developed using the hot-homogenization method using a high-pressure homogenizer. The drug-lipid compatibility study was assessed by the FTIR, and the thermal analysis was performed using differential scanning calorimetry (DSC). During the scrutiny of lipids, the highest solubility of Apixaban was estimated in the glyceryl monostearate, hence selected for the formulation. Moreover, the colloidal solution was stabilized by the polyethylene glycol 200. The Design of Expert software (Version 13, Stat-Ease) was implemented for the optimization analysis by considering the 3-independent factors and 2-dependent parameters. The Patents on the SLN are Indian 202321053691, U.S. Patent, 10,973,798B2, U.S. Patent, U.S. Patent 2021/0069121A1, U.S. Patent 2022/0151945A1.

Results: Box-Behnken design was applied along with ANOVA, which showed a p-value less than 0.05 for the dependent parameters such as particle size and entrapment efficiency (p-value: 0.0476 and 0.0379). The optimized batch F10 showed a particle size of 167.1 nm, -19.5 mV zeta potential, and an entrapment efficiency of 87.32%. The optimized batch F10 was lyophilized and analyzed by Scanning electron microscopy (SEM), which showed a particle size of 130 nm. The solid powder was filled into the capsule for oral delivery.

Conclusion: The marked improvement in solubility and bioavailability was achieved with F10- loaded Apixaban via Solid lipid nanoparticles. Moreover, the sustained released profile also minimizes the unseen complications that occur due to the clotting of blood.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Recent Patents on Nanotechnology
Recent Patents on Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
4.70
自引率
10.00%
发文量
50
审稿时长
3 months
期刊介绍: Recent Patents on Nanotechnology publishes full-length/mini reviews and research articles that reflect or deal with studies in relation to a patent, application of reported patents in a study, discussion of comparison of results regarding application of a given patent, etc., and also guest edited thematic issues on recent patents in the field of nanotechnology. A selection of important and recent patents on nanotechnology is also included in the journal. The journal is essential reading for all researchers involved in nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信