辐照时的年龄、性别、遗传多样性和粒细胞生成细胞因子辐射对小鼠 H-ARS 存活者的寿命和淋巴瘤发展的影响

IF 2.5 3区 医学 Q2 BIOLOGY
P Artur Plett, Hui Lin Chua, Tong Wu, Carol H Sampson, Theresa A Guise, Laura Wright, Gabriel M Pagnotti, Hailin Feng, Helen Chin-Sinex, Francis Pike, George N Cox, Thomas J MacVittie, George Sandusky, Christie M Orschell
{"title":"辐照时的年龄、性别、遗传多样性和粒细胞生成细胞因子辐射对小鼠 H-ARS 存活者的寿命和淋巴瘤发展的影响","authors":"P Artur Plett, Hui Lin Chua, Tong Wu, Carol H Sampson, Theresa A Guise, Laura Wright, Gabriel M Pagnotti, Hailin Feng, Helen Chin-Sinex, Francis Pike, George N Cox, Thomas J MacVittie, George Sandusky, Christie M Orschell","doi":"10.1667/RADE-24-00065.1","DOIUrl":null,"url":null,"abstract":"<p><p>Acute, high-dose radiation exposure results in life-threatening acute radiation syndrome (ARS) and debilitating delayed effects of acute radiation exposure (DEARE). The DEARE are a set of chronic multi-organ illnesses that can result in early death due to malignancy and other diseases. Animal models have proven essential in understanding the natural history of ARS and DEARE and licensure of medical countermeasures (MCM) according to the FDA Animal Rule. Our lab has developed models of hematopoietic (H)-ARS and DEARE in inbred C57BL/6J and Jackson Diversity Outbred (JDO) mice of both sexes and various ages and have used these models to identify mechanisms of radiation damage and effective MCMs. Herein, aggregate data from studies conducted over decades in our lab, consisting of 3,250 total-body lethally irradiated C57BL/6J young adult mice and 1,188 H-ARS survivors from these studies, along with smaller datasets in C57BL/6J pediatric and geriatric mice and JDO mice, were examined for lifespan and development of thymic lymphoma in survivors up to 3 years of age. Lifespan was found to be significantly shortened in H-ARS survivors compared to age-matched nonirradiated controls in all four models. Males and females exhibited similar lifespans except in the young adult C57BL/6J model where males survived longer than females after 16 months of age. The incidence of thymic lymphoma was increased in H-ARS survivors from the young adult and pediatric C57BL/6J models. Consistent with our findings in H-ARS, geriatric mice appeared more radioresistant than other models, with a lifespan and thymic lymphoma incidence more similar to nonirradiated controls than other models. Increased levels of multiple pro-inflammatory cytokines in DEARE bone marrow and serum correlated with shortened lifespan and malignancy, consistent with other animal models and human data. Of interest, G-CSF levels in bone marrow and serum 8-11 months after irradiation were significantly increased in females. Importantly, treatment with granulopoietic cytokine MCM for radiomitigation of H-ARS did not influence the long-term survival rate or incidence of thymic lymphoma in any model. Taken together, these findings indicate that the lifespan of H-ARS survivors was significantly decreased regardless of age at time of exposure or genetic diversity, and was unaffected by earlier treatment with granulopoietic cytokines for radiomitigation of H-ARS.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Age at Time of Irradiation, Sex, Genetic Diversity, and Granulopoietic Cytokine Radiomitigation on Lifespan and Lymphoma Development in Murine H-ARS Survivors.\",\"authors\":\"P Artur Plett, Hui Lin Chua, Tong Wu, Carol H Sampson, Theresa A Guise, Laura Wright, Gabriel M Pagnotti, Hailin Feng, Helen Chin-Sinex, Francis Pike, George N Cox, Thomas J MacVittie, George Sandusky, Christie M Orschell\",\"doi\":\"10.1667/RADE-24-00065.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute, high-dose radiation exposure results in life-threatening acute radiation syndrome (ARS) and debilitating delayed effects of acute radiation exposure (DEARE). The DEARE are a set of chronic multi-organ illnesses that can result in early death due to malignancy and other diseases. Animal models have proven essential in understanding the natural history of ARS and DEARE and licensure of medical countermeasures (MCM) according to the FDA Animal Rule. Our lab has developed models of hematopoietic (H)-ARS and DEARE in inbred C57BL/6J and Jackson Diversity Outbred (JDO) mice of both sexes and various ages and have used these models to identify mechanisms of radiation damage and effective MCMs. Herein, aggregate data from studies conducted over decades in our lab, consisting of 3,250 total-body lethally irradiated C57BL/6J young adult mice and 1,188 H-ARS survivors from these studies, along with smaller datasets in C57BL/6J pediatric and geriatric mice and JDO mice, were examined for lifespan and development of thymic lymphoma in survivors up to 3 years of age. Lifespan was found to be significantly shortened in H-ARS survivors compared to age-matched nonirradiated controls in all four models. Males and females exhibited similar lifespans except in the young adult C57BL/6J model where males survived longer than females after 16 months of age. The incidence of thymic lymphoma was increased in H-ARS survivors from the young adult and pediatric C57BL/6J models. Consistent with our findings in H-ARS, geriatric mice appeared more radioresistant than other models, with a lifespan and thymic lymphoma incidence more similar to nonirradiated controls than other models. Increased levels of multiple pro-inflammatory cytokines in DEARE bone marrow and serum correlated with shortened lifespan and malignancy, consistent with other animal models and human data. Of interest, G-CSF levels in bone marrow and serum 8-11 months after irradiation were significantly increased in females. Importantly, treatment with granulopoietic cytokine MCM for radiomitigation of H-ARS did not influence the long-term survival rate or incidence of thymic lymphoma in any model. Taken together, these findings indicate that the lifespan of H-ARS survivors was significantly decreased regardless of age at time of exposure or genetic diversity, and was unaffected by earlier treatment with granulopoietic cytokines for radiomitigation of H-ARS.</p>\",\"PeriodicalId\":20903,\"journal\":{\"name\":\"Radiation research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1667/RADE-24-00065.1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-24-00065.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

急性高剂量辐照会导致危及生命的急性辐射综合征(ARS)和急性辐照的衰弱性延迟效应(DEARE)。延迟效应是一系列慢性多器官疾病,可导致因恶性肿瘤和其他疾病而过早死亡。事实证明,动物模型对于了解 ARS 和 DEARE 的自然史以及根据 FDA 动物规则获得医疗对策 (MCM) 许可至关重要。我们的实验室已在近交系 C57BL/6J 和杰克逊多样性杂交(JDO)小鼠(雌雄兼有、年龄各异)中建立了造血(H)-ARS 和 DEARE 模型,并利用这些模型确定了辐射损伤机制和有效的 MCM。在此,我们对实验室数十年来进行的研究数据进行了汇总,包括3250只全身致死辐照的C57BL/6年轻成年小鼠和这些研究中的1188只H-ARS幸存者,以及C57BL/6J小儿和老年小鼠和JDO小鼠的较小数据集,研究了3岁以下幸存者的寿命和胸腺淋巴瘤的发展情况。在所有四个模型中,与年龄匹配的非辐照对照组相比,H-ARS 存活者的寿命明显缩短。雄性和雌性的寿命相似,但在年轻的成年 C57BL/6J 模型中,雄性在 16 个月后的存活时间长于雌性。在幼年和小儿 C57BL/6J 模型中,H-ARS 存活者的胸腺淋巴瘤发病率增加。与我们在H-ARS中的发现一致,老年小鼠似乎比其他模型更具放射抗性,其寿命和胸腺淋巴瘤发病率与非辐照对照组更相似。DEARE 骨髓和血清中多种促炎细胞因子水平的升高与寿命缩短和恶性肿瘤相关,这与其他动物模型和人类数据一致。值得注意的是,雌性患者在照射后8-11个月骨髓和血清中的G-CSF水平显著升高。重要的是,使用粒细胞生成因子 MCM 对 H-ARS 进行放射性缓解治疗,并不会影响任何模型的长期存活率或胸腺淋巴瘤的发病率。综上所述,这些研究结果表明,无论受辐射时的年龄或遗传多样性如何,H-ARS 幸存者的寿命都会显著缩短,并且不会受到早期使用粒细胞生成细胞因子进行 H-ARS 辐射缓解治疗的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Age at Time of Irradiation, Sex, Genetic Diversity, and Granulopoietic Cytokine Radiomitigation on Lifespan and Lymphoma Development in Murine H-ARS Survivors.

Acute, high-dose radiation exposure results in life-threatening acute radiation syndrome (ARS) and debilitating delayed effects of acute radiation exposure (DEARE). The DEARE are a set of chronic multi-organ illnesses that can result in early death due to malignancy and other diseases. Animal models have proven essential in understanding the natural history of ARS and DEARE and licensure of medical countermeasures (MCM) according to the FDA Animal Rule. Our lab has developed models of hematopoietic (H)-ARS and DEARE in inbred C57BL/6J and Jackson Diversity Outbred (JDO) mice of both sexes and various ages and have used these models to identify mechanisms of radiation damage and effective MCMs. Herein, aggregate data from studies conducted over decades in our lab, consisting of 3,250 total-body lethally irradiated C57BL/6J young adult mice and 1,188 H-ARS survivors from these studies, along with smaller datasets in C57BL/6J pediatric and geriatric mice and JDO mice, were examined for lifespan and development of thymic lymphoma in survivors up to 3 years of age. Lifespan was found to be significantly shortened in H-ARS survivors compared to age-matched nonirradiated controls in all four models. Males and females exhibited similar lifespans except in the young adult C57BL/6J model where males survived longer than females after 16 months of age. The incidence of thymic lymphoma was increased in H-ARS survivors from the young adult and pediatric C57BL/6J models. Consistent with our findings in H-ARS, geriatric mice appeared more radioresistant than other models, with a lifespan and thymic lymphoma incidence more similar to nonirradiated controls than other models. Increased levels of multiple pro-inflammatory cytokines in DEARE bone marrow and serum correlated with shortened lifespan and malignancy, consistent with other animal models and human data. Of interest, G-CSF levels in bone marrow and serum 8-11 months after irradiation were significantly increased in females. Importantly, treatment with granulopoietic cytokine MCM for radiomitigation of H-ARS did not influence the long-term survival rate or incidence of thymic lymphoma in any model. Taken together, these findings indicate that the lifespan of H-ARS survivors was significantly decreased regardless of age at time of exposure or genetic diversity, and was unaffected by earlier treatment with granulopoietic cytokines for radiomitigation of H-ARS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiation research
Radiation research 医学-核医学
CiteScore
5.10
自引率
8.80%
发文量
179
审稿时长
1 months
期刊介绍: Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with chemical agents contributing to the understanding of radiation effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信