使用深度学习模型在定量 MR T1 图上自动分割左心室心肌,并计算径向 T1 和 ECV 值。

IF 2.7 4区 医学 Q2 BIOPHYSICS
NMR in Biomedicine Pub Date : 2024-12-01 Epub Date: 2024-08-04 DOI:10.1002/nbm.5230
Raufiya Jafari, Ankit Kandpal, Radhakrishan Verma, Vinayak Aggarwal, Rakesh Kumar Gupta, Anup Singh
{"title":"使用深度学习模型在定量 MR T1 图上自动分割左心室心肌,并计算径向 T1 和 ECV 值。","authors":"Raufiya Jafari, Ankit Kandpal, Radhakrishan Verma, Vinayak Aggarwal, Rakesh Kumar Gupta, Anup Singh","doi":"10.1002/nbm.5230","DOIUrl":null,"url":null,"abstract":"<p><p>Native T1 mapping is a non-invasive technique used for early detection of diffused myocardial abnormalities, and it provides baseline tissue characterization. Post-contrast T1 mapping enhances tissue differentiation, enables extracellular volume (ECV) calculation, and improves myocardial viability assessment. Accurate and precise segmenting of the left ventricular (LV) myocardium on T1 maps is crucial for assessing myocardial tissue characteristics and diagnosing cardiovascular diseases (CVD). This study presents a deep learning (DL)-based pipeline for automatically segmenting LV myocardium on T1 maps and automatic computation of radial T1 and ECV values. The study employs a multicentric dataset consisting of retrospective multiparametric MRI data of 332 subjects to develop and assess the performance of the proposed method. The study compared DL architectures U-Net and Deep Res U-Net for LV myocardium segmentation, which achieved a dice similarity coefficient of 0.84 ± 0.43 and 0.85 ± 0.03, respectively. The dice similarity coefficients computed for radial sub-segmentation of the LV myocardium on basal, mid-cavity, and apical slices were 0.77 ± 0.21, 0.81 ± 0.17, and 0.61 ± 0.14, respectively. The t-test performed between ground truth vs. predicted values of native T1, post-contrast T1, and ECV showed no statistically significant difference (p > 0.05) for any of the radial sub-segments. The proposed DL method leverages the use of quantitative T1 maps for automatic LV myocardium segmentation and accurately computing radial T1 and ECV values, highlighting its potential for assisting radiologists in objective cardiac assessment and, hence, in CVD diagnostics.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5230"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic pipeline for segmentation of LV myocardium on quantitative MR T1 maps using deep learning model and computation of radial T1 and ECV values.\",\"authors\":\"Raufiya Jafari, Ankit Kandpal, Radhakrishan Verma, Vinayak Aggarwal, Rakesh Kumar Gupta, Anup Singh\",\"doi\":\"10.1002/nbm.5230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Native T1 mapping is a non-invasive technique used for early detection of diffused myocardial abnormalities, and it provides baseline tissue characterization. Post-contrast T1 mapping enhances tissue differentiation, enables extracellular volume (ECV) calculation, and improves myocardial viability assessment. Accurate and precise segmenting of the left ventricular (LV) myocardium on T1 maps is crucial for assessing myocardial tissue characteristics and diagnosing cardiovascular diseases (CVD). This study presents a deep learning (DL)-based pipeline for automatically segmenting LV myocardium on T1 maps and automatic computation of radial T1 and ECV values. The study employs a multicentric dataset consisting of retrospective multiparametric MRI data of 332 subjects to develop and assess the performance of the proposed method. The study compared DL architectures U-Net and Deep Res U-Net for LV myocardium segmentation, which achieved a dice similarity coefficient of 0.84 ± 0.43 and 0.85 ± 0.03, respectively. The dice similarity coefficients computed for radial sub-segmentation of the LV myocardium on basal, mid-cavity, and apical slices were 0.77 ± 0.21, 0.81 ± 0.17, and 0.61 ± 0.14, respectively. The t-test performed between ground truth vs. predicted values of native T1, post-contrast T1, and ECV showed no statistically significant difference (p > 0.05) for any of the radial sub-segments. The proposed DL method leverages the use of quantitative T1 maps for automatic LV myocardium segmentation and accurately computing radial T1 and ECV values, highlighting its potential for assisting radiologists in objective cardiac assessment and, hence, in CVD diagnostics.</p>\",\"PeriodicalId\":19309,\"journal\":{\"name\":\"NMR in Biomedicine\",\"volume\":\" \",\"pages\":\"e5230\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NMR in Biomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/nbm.5230\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5230","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

原位 T1 映像是一种无创技术,用于早期检测弥漫性心肌异常,并提供基线组织特征。对比后 T1 映射可增强组织分化,计算细胞外容积 (ECV),并改善心肌活力评估。在T1图上准确、精确地分割左心室(LV)心肌对于评估心肌组织特征和诊断心血管疾病(CVD)至关重要。本研究提出了一种基于深度学习(DL)的管道,用于自动分割 T1 图上的左心室心肌,并自动计算径向 T1 值和 ECV 值。该研究采用了由 332 名受试者的回顾性多参数 MRI 数据组成的多中心数据集,以开发和评估所提出方法的性能。研究比较了用于左心室心肌分割的 DL 架构 U-Net 和 Deep Res U-Net,它们的骰子相似系数分别为 0.84 ± 0.43 和 0.85 ± 0.03。在基底、中腔和心尖切片上对左心室心肌进行径向细分计算得出的骰子相似系数分别为 0.77 ± 0.21、0.81 ± 0.17 和 0.61 ± 0.14。在原始 T1、对比后 T1 和 ECV 的地面真实值与预测值之间进行的 t 检验显示,任何径向亚节段都没有统计学意义上的显著差异(p > 0.05)。所提出的 DL 方法利用定量 T1 图自动分割左心室心肌并准确计算径向 T1 和 ECV 值,突出了其在协助放射科医生进行客观心脏评估,进而进行心血管疾病诊断方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic pipeline for segmentation of LV myocardium on quantitative MR T1 maps using deep learning model and computation of radial T1 and ECV values.

Native T1 mapping is a non-invasive technique used for early detection of diffused myocardial abnormalities, and it provides baseline tissue characterization. Post-contrast T1 mapping enhances tissue differentiation, enables extracellular volume (ECV) calculation, and improves myocardial viability assessment. Accurate and precise segmenting of the left ventricular (LV) myocardium on T1 maps is crucial for assessing myocardial tissue characteristics and diagnosing cardiovascular diseases (CVD). This study presents a deep learning (DL)-based pipeline for automatically segmenting LV myocardium on T1 maps and automatic computation of radial T1 and ECV values. The study employs a multicentric dataset consisting of retrospective multiparametric MRI data of 332 subjects to develop and assess the performance of the proposed method. The study compared DL architectures U-Net and Deep Res U-Net for LV myocardium segmentation, which achieved a dice similarity coefficient of 0.84 ± 0.43 and 0.85 ± 0.03, respectively. The dice similarity coefficients computed for radial sub-segmentation of the LV myocardium on basal, mid-cavity, and apical slices were 0.77 ± 0.21, 0.81 ± 0.17, and 0.61 ± 0.14, respectively. The t-test performed between ground truth vs. predicted values of native T1, post-contrast T1, and ECV showed no statistically significant difference (p > 0.05) for any of the radial sub-segments. The proposed DL method leverages the use of quantitative T1 maps for automatic LV myocardium segmentation and accurately computing radial T1 and ECV values, highlighting its potential for assisting radiologists in objective cardiac assessment and, hence, in CVD diagnostics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NMR in Biomedicine
NMR in Biomedicine 医学-光谱学
CiteScore
6.00
自引率
10.30%
发文量
209
审稿时长
3-8 weeks
期刊介绍: NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信