{"title":"用于区分结核瘤与高级别胶质瘤和转移瘤的放射组学特征:一项多模态研究。","authors":"Abhilasha Indoria, Karthik Kulanthaivelu, Chandrajit Prasad, Dwarakanath Srinivas, Shilpa Rao, Neelam Sinha, Vivek Potluri, M Netravathi, Atchayaram Nalini, Jitender Saini","doi":"10.1007/s00234-024-03435-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tuberculomas are prevalent in developing countries and demonstrate variable signals on MRI resulting in the overlap of the conventional imaging phenotype with other entities including glioma and brain metastasis. An accurate MRI diagnosis is important for the early institution of anti-tubercular therapy, decreased patient morbidity, mortality, and prevents unnecessary neurosurgical excision. This study aims to assess the potential of radiomics features of regular contrast images including T1W, T2W, T2W FLAIR, T1W post contrast images, and ADC maps, to differentiate between tuberculomas, high-grade-gliomas and metastasis, the commonest intra parenchymal mass lesions encountered in the clinical practice.</p><p><strong>Methods: </strong>This retrospective study includes 185 subjects. Images were resampled, co-registered, skull-stripped, and zscore-normalized. Automated lesion segmentation was performed followed by radiomics feature extraction, train-test split, and features reduction. All machine learning algorithms that natively support multiclass classification were trained and assessed on features extracted from individual modalities as well as combined modalities. Model explainability of the best performing model was calculated using the summary plot obtained by SHAP values.</p><p><strong>Results: </strong>Extra tree classifier trained on the features from ADC maps was the best classifier for the discrimination of tuberculoma from high-grade-glioma and metastasis with AUC-score of 0.96, accuracy-score of 0.923, Brier-score of 0.23.</p><p><strong>Conclusion: </strong>This study demonstrates that radiomics features are effective in discriminating between tuberculoma, metastasis, and high-grade-glioma with notable accuracy and AUC scores. Features extracted from the ADC maps surfaced as the most robust predictors of the target variable.</p>","PeriodicalId":19422,"journal":{"name":"Neuroradiology","volume":" ","pages":"1979-1992"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiomics features for the discrimination of tuberculomas from high grade gliomas and metastasis: a multimodal study.\",\"authors\":\"Abhilasha Indoria, Karthik Kulanthaivelu, Chandrajit Prasad, Dwarakanath Srinivas, Shilpa Rao, Neelam Sinha, Vivek Potluri, M Netravathi, Atchayaram Nalini, Jitender Saini\",\"doi\":\"10.1007/s00234-024-03435-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Tuberculomas are prevalent in developing countries and demonstrate variable signals on MRI resulting in the overlap of the conventional imaging phenotype with other entities including glioma and brain metastasis. An accurate MRI diagnosis is important for the early institution of anti-tubercular therapy, decreased patient morbidity, mortality, and prevents unnecessary neurosurgical excision. This study aims to assess the potential of radiomics features of regular contrast images including T1W, T2W, T2W FLAIR, T1W post contrast images, and ADC maps, to differentiate between tuberculomas, high-grade-gliomas and metastasis, the commonest intra parenchymal mass lesions encountered in the clinical practice.</p><p><strong>Methods: </strong>This retrospective study includes 185 subjects. Images were resampled, co-registered, skull-stripped, and zscore-normalized. Automated lesion segmentation was performed followed by radiomics feature extraction, train-test split, and features reduction. All machine learning algorithms that natively support multiclass classification were trained and assessed on features extracted from individual modalities as well as combined modalities. Model explainability of the best performing model was calculated using the summary plot obtained by SHAP values.</p><p><strong>Results: </strong>Extra tree classifier trained on the features from ADC maps was the best classifier for the discrimination of tuberculoma from high-grade-glioma and metastasis with AUC-score of 0.96, accuracy-score of 0.923, Brier-score of 0.23.</p><p><strong>Conclusion: </strong>This study demonstrates that radiomics features are effective in discriminating between tuberculoma, metastasis, and high-grade-glioma with notable accuracy and AUC scores. Features extracted from the ADC maps surfaced as the most robust predictors of the target variable.</p>\",\"PeriodicalId\":19422,\"journal\":{\"name\":\"Neuroradiology\",\"volume\":\" \",\"pages\":\"1979-1992\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroradiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00234-024-03435-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroradiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00234-024-03435-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Radiomics features for the discrimination of tuberculomas from high grade gliomas and metastasis: a multimodal study.
Background: Tuberculomas are prevalent in developing countries and demonstrate variable signals on MRI resulting in the overlap of the conventional imaging phenotype with other entities including glioma and brain metastasis. An accurate MRI diagnosis is important for the early institution of anti-tubercular therapy, decreased patient morbidity, mortality, and prevents unnecessary neurosurgical excision. This study aims to assess the potential of radiomics features of regular contrast images including T1W, T2W, T2W FLAIR, T1W post contrast images, and ADC maps, to differentiate between tuberculomas, high-grade-gliomas and metastasis, the commonest intra parenchymal mass lesions encountered in the clinical practice.
Methods: This retrospective study includes 185 subjects. Images were resampled, co-registered, skull-stripped, and zscore-normalized. Automated lesion segmentation was performed followed by radiomics feature extraction, train-test split, and features reduction. All machine learning algorithms that natively support multiclass classification were trained and assessed on features extracted from individual modalities as well as combined modalities. Model explainability of the best performing model was calculated using the summary plot obtained by SHAP values.
Results: Extra tree classifier trained on the features from ADC maps was the best classifier for the discrimination of tuberculoma from high-grade-glioma and metastasis with AUC-score of 0.96, accuracy-score of 0.923, Brier-score of 0.23.
Conclusion: This study demonstrates that radiomics features are effective in discriminating between tuberculoma, metastasis, and high-grade-glioma with notable accuracy and AUC scores. Features extracted from the ADC maps surfaced as the most robust predictors of the target variable.
期刊介绍:
Neuroradiology aims to provide state-of-the-art medical and scientific information in the fields of Neuroradiology, Neurosciences, Neurology, Psychiatry, Neurosurgery, and related medical specialities. Neuroradiology as the official Journal of the European Society of Neuroradiology receives submissions from all parts of the world and publishes peer-reviewed original research, comprehensive reviews, educational papers, opinion papers, and short reports on exceptional clinical observations and new technical developments in the field of Neuroimaging and Neurointervention. The journal has subsections for Diagnostic and Interventional Neuroradiology, Advanced Neuroimaging, Paediatric Neuroradiology, Head-Neck-ENT Radiology, Spine Neuroradiology, and for submissions from Japan. Neuroradiology aims to provide new knowledge about and insights into the function and pathology of the human nervous system that may help to better diagnose and treat nervous system diseases. Neuroradiology is a member of the Committee on Publication Ethics (COPE) and follows the COPE core practices. Neuroradiology prefers articles that are free of bias, self-critical regarding limitations, transparent and clear in describing study participants, methods, and statistics, and short in presenting results. Before peer-review all submissions are automatically checked by iThenticate to assess for potential overlap in prior publication.