对二氧化钛纳米粒子诱发肺癌的机理证据进行系统回顾。

IF 3.6 3区 医学 Q3 NANOSCIENCE & NANOTECHNOLOGY
Nanotoxicology Pub Date : 2024-08-01 Epub Date: 2024-08-05 DOI:10.1080/17435390.2024.2384408
Susann Wolf, Krishnan Sriram, Laura M A Camassa, Dhruba Pathak, Helene L Bing, Benedicte Mohr, Shan Zienolddiny-Narui, Johanna Samulin Erdem
{"title":"对二氧化钛纳米粒子诱发肺癌的机理证据进行系统回顾。","authors":"Susann Wolf, Krishnan Sriram, Laura M A Camassa, Dhruba Pathak, Helene L Bing, Benedicte Mohr, Shan Zienolddiny-Narui, Johanna Samulin Erdem","doi":"10.1080/17435390.2024.2384408","DOIUrl":null,"url":null,"abstract":"<p><p>Nano-sized titanium dioxide particles (TiO<sub>2</sub> NPs) are a high-production volume nanomaterial widely used in the paints, cosmetics, food and photovoltaics industry. However, the potential carcinogenic effects of TiO<sub>2</sub> NPs in the lung are still unclear despite the vast number of <i>in vitro</i> and <i>in vivo</i> studies investigating TiO<sub>2</sub> NPs. Here, we systematically reviewed the existing <i>in vitro</i> and <i>in vivo</i> mechanistic evidence of TiO<sub>2</sub> NP lung carcinogenicity using the ten key characteristics of carcinogens for identifying and classifying carcinogens. A total of 346 studies qualified for the quality and reliability assessment, of which 206 were considered good quality. Using a weight-of-evidence approach, these studies provided mainly moderate to high confidence for the biological endpoints regarding genotoxicity, oxidative stress and chronic inflammation. A limited number of studies investigated other endpoints important to carcinogenesis, relating to proliferation and transformation, epigenetic alterations and receptor-mediated effects. In summary, TiO<sub>2</sub> NPs might possess the ability to induce chronic inflammation and oxidative stress, but it was challenging to compare the findings in the studies due to the wide variety of TiO<sub>2</sub> NPs differing in their physicochemical characteristics, formulation, exposure scenarios/test systems, and experimental protocols. Given the limited number of high-quality and high-reliability studies identified within this review, there is a lack of good enough mechanistic evidence for TiO<sub>2</sub> NP lung carcinogenicity. Future toxicology/carcinogenicity research must consider including positive controls, endotoxin testing (where necessary), statistical power analysis, and relevant biological endpoints, to improve the study quality and provide reliable data for evaluating TiO<sub>2</sub> NP-induced lung carcinogenicity.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"437-463"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic review of mechanistic evidence for TiO<sub>2</sub> nanoparticle-induced lung carcinogenicity.\",\"authors\":\"Susann Wolf, Krishnan Sriram, Laura M A Camassa, Dhruba Pathak, Helene L Bing, Benedicte Mohr, Shan Zienolddiny-Narui, Johanna Samulin Erdem\",\"doi\":\"10.1080/17435390.2024.2384408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nano-sized titanium dioxide particles (TiO<sub>2</sub> NPs) are a high-production volume nanomaterial widely used in the paints, cosmetics, food and photovoltaics industry. However, the potential carcinogenic effects of TiO<sub>2</sub> NPs in the lung are still unclear despite the vast number of <i>in vitro</i> and <i>in vivo</i> studies investigating TiO<sub>2</sub> NPs. Here, we systematically reviewed the existing <i>in vitro</i> and <i>in vivo</i> mechanistic evidence of TiO<sub>2</sub> NP lung carcinogenicity using the ten key characteristics of carcinogens for identifying and classifying carcinogens. A total of 346 studies qualified for the quality and reliability assessment, of which 206 were considered good quality. Using a weight-of-evidence approach, these studies provided mainly moderate to high confidence for the biological endpoints regarding genotoxicity, oxidative stress and chronic inflammation. A limited number of studies investigated other endpoints important to carcinogenesis, relating to proliferation and transformation, epigenetic alterations and receptor-mediated effects. In summary, TiO<sub>2</sub> NPs might possess the ability to induce chronic inflammation and oxidative stress, but it was challenging to compare the findings in the studies due to the wide variety of TiO<sub>2</sub> NPs differing in their physicochemical characteristics, formulation, exposure scenarios/test systems, and experimental protocols. Given the limited number of high-quality and high-reliability studies identified within this review, there is a lack of good enough mechanistic evidence for TiO<sub>2</sub> NP lung carcinogenicity. Future toxicology/carcinogenicity research must consider including positive controls, endotoxin testing (where necessary), statistical power analysis, and relevant biological endpoints, to improve the study quality and provide reliable data for evaluating TiO<sub>2</sub> NP-induced lung carcinogenicity.</p>\",\"PeriodicalId\":18899,\"journal\":{\"name\":\"Nanotoxicology\",\"volume\":\" \",\"pages\":\"437-463\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotoxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17435390.2024.2384408\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2024.2384408","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

纳米二氧化钛颗粒(TiO2 NPs)是一种高产量纳米材料,广泛应用于涂料、化妆品、食品和光伏产业。然而,尽管对二氧化钛纳米粒子进行了大量的体外和体内研究,但二氧化钛纳米粒子在肺部的潜在致癌效应仍不明确。在此,我们利用致癌物的十个关键特征对TiO2 NP肺致癌的现有体外和体内机理证据进行了系统回顾,以便对致癌物进行识别和分类。共有346项研究符合质量和可靠性评估条件,其中206项被认为质量良好。采用证据权重法,这些研究主要为遗传毒性、氧化应激和慢性炎症等生物终点提供了中度至高度可信度。少数研究调查了对致癌很重要的其他终点,涉及增殖和转化、表观遗传改变和受体介导效应。总之,二氧化钛氮氧化物可能具有诱导慢性炎症和氧化应激的能力,但由于二氧化钛氮氧化物的理化特性、配方、暴露情景/测试系统和实验方案各不相同,因此比较这些研究的结果具有挑战性。鉴于本综述中确定的高质量和高可靠性研究数量有限,因此在二氧化钛氮氧化物肺致癌性方面缺乏足够好的机理证据。未来的毒理学/致癌性研究必须考虑包括阳性对照、内毒素测试(必要时)、统计功率分析和相关生物终点,以提高研究质量,为评估二氧化钛氮氧化物诱发肺癌提供可靠数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systematic review of mechanistic evidence for TiO2 nanoparticle-induced lung carcinogenicity.

Nano-sized titanium dioxide particles (TiO2 NPs) are a high-production volume nanomaterial widely used in the paints, cosmetics, food and photovoltaics industry. However, the potential carcinogenic effects of TiO2 NPs in the lung are still unclear despite the vast number of in vitro and in vivo studies investigating TiO2 NPs. Here, we systematically reviewed the existing in vitro and in vivo mechanistic evidence of TiO2 NP lung carcinogenicity using the ten key characteristics of carcinogens for identifying and classifying carcinogens. A total of 346 studies qualified for the quality and reliability assessment, of which 206 were considered good quality. Using a weight-of-evidence approach, these studies provided mainly moderate to high confidence for the biological endpoints regarding genotoxicity, oxidative stress and chronic inflammation. A limited number of studies investigated other endpoints important to carcinogenesis, relating to proliferation and transformation, epigenetic alterations and receptor-mediated effects. In summary, TiO2 NPs might possess the ability to induce chronic inflammation and oxidative stress, but it was challenging to compare the findings in the studies due to the wide variety of TiO2 NPs differing in their physicochemical characteristics, formulation, exposure scenarios/test systems, and experimental protocols. Given the limited number of high-quality and high-reliability studies identified within this review, there is a lack of good enough mechanistic evidence for TiO2 NP lung carcinogenicity. Future toxicology/carcinogenicity research must consider including positive controls, endotoxin testing (where necessary), statistical power analysis, and relevant biological endpoints, to improve the study quality and provide reliable data for evaluating TiO2 NP-induced lung carcinogenicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotoxicology
Nanotoxicology 医学-毒理学
CiteScore
10.10
自引率
4.00%
发文量
45
审稿时长
3.5 months
期刊介绍: Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology . While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信