Mehmet Erdem , Şeniz Erdem , Ahmet Alver , Tuğba Raika Kıran , Süleyman Caner Karahan
{"title":"β2-肾上腺素受体激动剂福莫特罗通过增强 IκBα/NF-κB 抑制、SQSTM1/p62 依赖性选择性自噬和 ESCRT-III 介导的质膜修复,减轻小胶质细胞中 NLRP3 炎性体的激活和 GSDMD 介导的脓毒症。","authors":"Mehmet Erdem , Şeniz Erdem , Ahmet Alver , Tuğba Raika Kıran , Süleyman Caner Karahan","doi":"10.1016/j.mcn.2024.103956","DOIUrl":null,"url":null,"abstract":"<div><p>Microglia are immune cells that play important roles in the formation of the innate immune response within the central nervous system (CNS). The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a multiple protein complex that is crucial for innate immunity, and excessive activation of the inflammasome for various reasons contributes to the pathogenesis of neurodegenerative diseases (NDs). β<sub>2</sub>-adrenoceptor agonists have become the focus of attention in studies on NDs due to the high synthesis of β<sub>2</sub>-adrenoceptors in the central nervous system (CNS). Promising results have been obtained from these studies targeting anti-inflammatory and neuroprotective effects. Formoterol is an effective, safe for long-term use, and FDA-approved β<sub>2</sub>-adrenoceptor agonist with demonstrated anti-inflammatory features in the CNS. In this study, we researched the effects of formoterol on LPS/ATP-stimulated NLRP3 inflammasome activation, pyroptosis, NF-κB, autophagy, and ESCRT-III-mediated plasma membrane repair pathways in the N9 microglia cells. The results showed that formoterol, through the IκBα/NF-κB axis, significantly inhibited NLRP3 inflammasome activation, reduced the level of active caspase-1, secretion of IL-1β and IL-18 proinflammatory cytokine levels, and the levels of pyroptosis. Additionally, we showed that formoterol activates autophagy, autophagosome formation, and ESCRT-III-mediated plasma membrane repair, which are significant pathways in the inhibition of NLRP3 inflammasome activation and pyroptosis. Our study suggests that formoterol efficaciously prevents the NLRP3 inflammasome activation and pyroptosis in microglial cells regulation through IκBα/NF-κB, autophagy, autophagosome formation, and ESCRT-III-mediated plasma membrane repair.</p></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"130 ","pages":"Article 103956"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"β2-adrenoceptor agonist formoterol attenuates NLRP3 inflammasome activation and GSDMD-mediated pyroptosis in microglia through enhancing IκBα/NF-κB inhibition, SQSTM1/p62-dependent selective autophagy and ESCRT-III-mediated plasma membrane repair\",\"authors\":\"Mehmet Erdem , Şeniz Erdem , Ahmet Alver , Tuğba Raika Kıran , Süleyman Caner Karahan\",\"doi\":\"10.1016/j.mcn.2024.103956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microglia are immune cells that play important roles in the formation of the innate immune response within the central nervous system (CNS). The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a multiple protein complex that is crucial for innate immunity, and excessive activation of the inflammasome for various reasons contributes to the pathogenesis of neurodegenerative diseases (NDs). β<sub>2</sub>-adrenoceptor agonists have become the focus of attention in studies on NDs due to the high synthesis of β<sub>2</sub>-adrenoceptors in the central nervous system (CNS). Promising results have been obtained from these studies targeting anti-inflammatory and neuroprotective effects. Formoterol is an effective, safe for long-term use, and FDA-approved β<sub>2</sub>-adrenoceptor agonist with demonstrated anti-inflammatory features in the CNS. In this study, we researched the effects of formoterol on LPS/ATP-stimulated NLRP3 inflammasome activation, pyroptosis, NF-κB, autophagy, and ESCRT-III-mediated plasma membrane repair pathways in the N9 microglia cells. The results showed that formoterol, through the IκBα/NF-κB axis, significantly inhibited NLRP3 inflammasome activation, reduced the level of active caspase-1, secretion of IL-1β and IL-18 proinflammatory cytokine levels, and the levels of pyroptosis. Additionally, we showed that formoterol activates autophagy, autophagosome formation, and ESCRT-III-mediated plasma membrane repair, which are significant pathways in the inhibition of NLRP3 inflammasome activation and pyroptosis. Our study suggests that formoterol efficaciously prevents the NLRP3 inflammasome activation and pyroptosis in microglial cells regulation through IκBα/NF-κB, autophagy, autophagosome formation, and ESCRT-III-mediated plasma membrane repair.</p></div>\",\"PeriodicalId\":18739,\"journal\":{\"name\":\"Molecular and Cellular Neuroscience\",\"volume\":\"130 \",\"pages\":\"Article 103956\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044743124000411\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044743124000411","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
β2-adrenoceptor agonist formoterol attenuates NLRP3 inflammasome activation and GSDMD-mediated pyroptosis in microglia through enhancing IκBα/NF-κB inhibition, SQSTM1/p62-dependent selective autophagy and ESCRT-III-mediated plasma membrane repair
Microglia are immune cells that play important roles in the formation of the innate immune response within the central nervous system (CNS). The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a multiple protein complex that is crucial for innate immunity, and excessive activation of the inflammasome for various reasons contributes to the pathogenesis of neurodegenerative diseases (NDs). β2-adrenoceptor agonists have become the focus of attention in studies on NDs due to the high synthesis of β2-adrenoceptors in the central nervous system (CNS). Promising results have been obtained from these studies targeting anti-inflammatory and neuroprotective effects. Formoterol is an effective, safe for long-term use, and FDA-approved β2-adrenoceptor agonist with demonstrated anti-inflammatory features in the CNS. In this study, we researched the effects of formoterol on LPS/ATP-stimulated NLRP3 inflammasome activation, pyroptosis, NF-κB, autophagy, and ESCRT-III-mediated plasma membrane repair pathways in the N9 microglia cells. The results showed that formoterol, through the IκBα/NF-κB axis, significantly inhibited NLRP3 inflammasome activation, reduced the level of active caspase-1, secretion of IL-1β and IL-18 proinflammatory cytokine levels, and the levels of pyroptosis. Additionally, we showed that formoterol activates autophagy, autophagosome formation, and ESCRT-III-mediated plasma membrane repair, which are significant pathways in the inhibition of NLRP3 inflammasome activation and pyroptosis. Our study suggests that formoterol efficaciously prevents the NLRP3 inflammasome activation and pyroptosis in microglial cells regulation through IκBα/NF-κB, autophagy, autophagosome formation, and ESCRT-III-mediated plasma membrane repair.
期刊介绍:
Molecular and Cellular Neuroscience publishes original research of high significance covering all aspects of neurosciences indicated by the broadest interpretation of the journal''s title. In particular, the journal focuses on synaptic maintenance, de- and re-organization, neuron-glia communication, and de-/regenerative neurobiology. In addition, studies using animal models of disease with translational prospects and experimental approaches with backward validation of disease signatures from human patients are welcome.