肌肉电刺激对改善大鼠肩部固定模型三角肌萎缩的影响

IF 2.1 3区 医学 Q2 ORTHOPEDICS
Jeongkun Lee, Su Hyun Lee, Hyuntae Kim, Seok Won Chung
{"title":"肌肉电刺激对改善大鼠肩部固定模型三角肌萎缩的影响","authors":"Jeongkun Lee,&nbsp;Su Hyun Lee,&nbsp;Hyuntae Kim,&nbsp;Seok Won Chung","doi":"10.1002/jor.25943","DOIUrl":null,"url":null,"abstract":"<p>Immobilization following trauma or surgery induces skeletal muscle atrophy, and improvement in the muscle atrophy is critical for successful clinical outcomes. The purpose of this study is to evaluate the effect of electrical muscle stimulation (EMS) on muscle atrophy. The study design is a controlled laboratory study. Eighty rats (56 to establish the deltoid muscle atrophy [DMA] model and 24 to evaluate the effect of EMS on the model) were used. DMA was induced by completely immobilizing the right shoulder of each rat by placing sutures between the scapula and humeral shaft, with the left shoulder as a control. After establishing the DMA model, rats were randomly assigned into three groups: low-frequency EMS (L-EMS, 10 Hz frequency), medium-frequency EMS (M-EMS, 50 Hz frequency), and control (eight rats per group). After 3 weeks, the deltoid muscles of each rat were harvested, alterations in gene expression and muscle cell size were evaluated, and immunohistochemical analysis was performed. DMA was most prominent 3 weeks after shoulder immobilization. Murf1 and Atrogin were significantly induced at the initial phase and gradually decreased at approximately 3 weeks; however, MyoD expressed an inverse relationship with Murf1 and Atrogin. IL6 expression was prominent at 1 week. The time point for the EMS effect evaluation was selected at 3 weeks, when the DMA was the most prominent with a change in relevant gene expression. The M-EMS group cell size was significantly larger than that of L-EMS and control group in both the immobilized and intact shoulders (all <i>p</i> &lt; 0.05), without significant differences between the L-EMS and control groups. The M-EMS group showed significantly lower mRNA expressions of Murf1 and Atrogin and higher expressions of MyoD and Col1A1 than that of the control group (all <i>p</i> &lt; 0.05). In immunohistochemical analysis, similar results were observed with lower Atrogin staining and higher MyoD and Col1A1 staining in the M-EMS group. DMA model was established by complete shoulder immobilization, with the most prominent muscle atrophy observed at 3 weeks. M-EMS improved DMA with changes in the expression of relevant genes. M-EMS might be a solution for strengthening atrophied skeletal muscles and facilitating rehabilitation after trauma or surgery.</p>","PeriodicalId":16650,"journal":{"name":"Journal of Orthopaedic Research®","volume":"42 12","pages":"2634-2645"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jor.25943","citationCount":"0","resultStr":"{\"title\":\"Effect of electrical muscle stimulation on the improvement of deltoid muscle atrophy in a rat shoulder immobilization model\",\"authors\":\"Jeongkun Lee,&nbsp;Su Hyun Lee,&nbsp;Hyuntae Kim,&nbsp;Seok Won Chung\",\"doi\":\"10.1002/jor.25943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Immobilization following trauma or surgery induces skeletal muscle atrophy, and improvement in the muscle atrophy is critical for successful clinical outcomes. The purpose of this study is to evaluate the effect of electrical muscle stimulation (EMS) on muscle atrophy. The study design is a controlled laboratory study. Eighty rats (56 to establish the deltoid muscle atrophy [DMA] model and 24 to evaluate the effect of EMS on the model) were used. DMA was induced by completely immobilizing the right shoulder of each rat by placing sutures between the scapula and humeral shaft, with the left shoulder as a control. After establishing the DMA model, rats were randomly assigned into three groups: low-frequency EMS (L-EMS, 10 Hz frequency), medium-frequency EMS (M-EMS, 50 Hz frequency), and control (eight rats per group). After 3 weeks, the deltoid muscles of each rat were harvested, alterations in gene expression and muscle cell size were evaluated, and immunohistochemical analysis was performed. DMA was most prominent 3 weeks after shoulder immobilization. Murf1 and Atrogin were significantly induced at the initial phase and gradually decreased at approximately 3 weeks; however, MyoD expressed an inverse relationship with Murf1 and Atrogin. IL6 expression was prominent at 1 week. The time point for the EMS effect evaluation was selected at 3 weeks, when the DMA was the most prominent with a change in relevant gene expression. The M-EMS group cell size was significantly larger than that of L-EMS and control group in both the immobilized and intact shoulders (all <i>p</i> &lt; 0.05), without significant differences between the L-EMS and control groups. The M-EMS group showed significantly lower mRNA expressions of Murf1 and Atrogin and higher expressions of MyoD and Col1A1 than that of the control group (all <i>p</i> &lt; 0.05). In immunohistochemical analysis, similar results were observed with lower Atrogin staining and higher MyoD and Col1A1 staining in the M-EMS group. DMA model was established by complete shoulder immobilization, with the most prominent muscle atrophy observed at 3 weeks. M-EMS improved DMA with changes in the expression of relevant genes. M-EMS might be a solution for strengthening atrophied skeletal muscles and facilitating rehabilitation after trauma or surgery.</p>\",\"PeriodicalId\":16650,\"journal\":{\"name\":\"Journal of Orthopaedic Research®\",\"volume\":\"42 12\",\"pages\":\"2634-2645\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jor.25943\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Orthopaedic Research®\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jor.25943\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Research®","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jor.25943","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

摘要

创伤或手术后的固定会诱发骨骼肌萎缩,而改善肌肉萎缩对临床疗效至关重要。本研究旨在评估肌肉电刺激(EMS)对肌肉萎缩的影响。研究设计是一项实验室对照研究。共使用了 80 只大鼠(56 只用于建立三角肌萎缩 [DMA] 模型,24 只用于评估 EMS 对该模型的影响)。通过在肩胛骨和肱骨轴之间缝合,将每只大鼠的右肩完全固定,从而诱发三角肌萎缩,左肩作为对照。建立 DMA 模型后,将大鼠随机分为三组:低频 EMS(L-EMS,频率为 10 赫兹)、中频 EMS(M-EMS,频率为 50 赫兹)和对照组(每组 8 只)。3 周后,收获每只大鼠的三角肌,评估基因表达和肌肉细胞大小的变化,并进行免疫组化分析。肩部固定 3 周后,DMA 最为明显。Murf1和Atrogin在初始阶段被显著诱导,并在大约3周后逐渐减少;然而,MyoD的表达与Murf1和Atrogin呈反向关系。IL6 的表达在 1 周时比较突出。EMS 效果评估的时间点选在 3 周,此时 DMA 与相关基因表达的变化最为显著。在固定肩部和完整肩部,M-EMS 组的细胞体积明显大于 L-EMS 组和对照组(所有 P
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of electrical muscle stimulation on the improvement of deltoid muscle atrophy in a rat shoulder immobilization model

Effect of electrical muscle stimulation on the improvement of deltoid muscle atrophy in a rat shoulder immobilization model

Immobilization following trauma or surgery induces skeletal muscle atrophy, and improvement in the muscle atrophy is critical for successful clinical outcomes. The purpose of this study is to evaluate the effect of electrical muscle stimulation (EMS) on muscle atrophy. The study design is a controlled laboratory study. Eighty rats (56 to establish the deltoid muscle atrophy [DMA] model and 24 to evaluate the effect of EMS on the model) were used. DMA was induced by completely immobilizing the right shoulder of each rat by placing sutures between the scapula and humeral shaft, with the left shoulder as a control. After establishing the DMA model, rats were randomly assigned into three groups: low-frequency EMS (L-EMS, 10 Hz frequency), medium-frequency EMS (M-EMS, 50 Hz frequency), and control (eight rats per group). After 3 weeks, the deltoid muscles of each rat were harvested, alterations in gene expression and muscle cell size were evaluated, and immunohistochemical analysis was performed. DMA was most prominent 3 weeks after shoulder immobilization. Murf1 and Atrogin were significantly induced at the initial phase and gradually decreased at approximately 3 weeks; however, MyoD expressed an inverse relationship with Murf1 and Atrogin. IL6 expression was prominent at 1 week. The time point for the EMS effect evaluation was selected at 3 weeks, when the DMA was the most prominent with a change in relevant gene expression. The M-EMS group cell size was significantly larger than that of L-EMS and control group in both the immobilized and intact shoulders (all p < 0.05), without significant differences between the L-EMS and control groups. The M-EMS group showed significantly lower mRNA expressions of Murf1 and Atrogin and higher expressions of MyoD and Col1A1 than that of the control group (all p < 0.05). In immunohistochemical analysis, similar results were observed with lower Atrogin staining and higher MyoD and Col1A1 staining in the M-EMS group. DMA model was established by complete shoulder immobilization, with the most prominent muscle atrophy observed at 3 weeks. M-EMS improved DMA with changes in the expression of relevant genes. M-EMS might be a solution for strengthening atrophied skeletal muscles and facilitating rehabilitation after trauma or surgery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Orthopaedic Research®
Journal of Orthopaedic Research® 医学-整形外科
CiteScore
6.10
自引率
3.60%
发文量
261
审稿时长
3-6 weeks
期刊介绍: The Journal of Orthopaedic Research is the forum for the rapid publication of high quality reports of new information on the full spectrum of orthopaedic research, including life sciences, engineering, translational, and clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信