Elizabeth K Weiss, Justin Baraboo, Cynthia K Rigsby, Joshua D Robinson, Liliana Ma, Mariana B L Falcão, Christopher W Roy, Matthias Stuber, Michael Markl
{"title":"呼吸分辨 5D 血流 MRI:健康志愿者和先天性心脏病患者的体内验证和呼吸相关血流变化。","authors":"Elizabeth K Weiss, Justin Baraboo, Cynthia K Rigsby, Joshua D Robinson, Liliana Ma, Mariana B L Falcão, Christopher W Roy, Matthias Stuber, Michael Markl","doi":"10.1016/j.jocmr.2024.101077","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aimed to validate respiratory-resolved five-dimensional (5D) flow cardiovascular magnetic resonance (CMR) against real-time two-dimensional (2D) phase-contrast MRI, assess the impact of number of respiratory states, and measure the impact of respiration on hemodynamics in congenital heart disease (CHD) patients.</p><p><strong>Methods: </strong>Respiratory-resolved 5D flow MRI-derived net and peak flow measurements were compared to real-time 2D phase-contrast MRI-derived measurements in 10 healthy volunteers. Pulmonary-to-systemic flow ratios (Qp:Qs) were measured in 19 CHD patients and aortopulmonary collateral burden was measured in 5 Fontan patients. Additionally, the impact of number of respiratory states on measured respiratory-driven net flow changes was investigated in 10 healthy volunteers and 19 CHD patients (shunt physiology, n = 11, single ventricle disease [SVD], n = 8).</p><p><strong>Results: </strong>There was good agreement between 5D flow MRI and real-time 2D phase-contrast-derived net and peak flow. Respiratory-driven changes had a good correlation (rho = 0.64, p < 0.001). In healthy volunteers, fewer than four respiratory states reduced measured respiratory-driven flow changes in veins (5.2 mL/cycle, p < 0.001) and arteries (1.7 mL/cycle, p = 0.05). Respiration drove substantial venous net flow changes in SVD (64% change) and shunt patients (57% change). Respiration had significantly greater impact in SVD patients compared to shunt patients in the right and left pulmonary arteries (46% vs 15%, p = 0.003 and 59% vs 20%, p = 0.002). Qp:Qs varied by 37 ± 24% over respiration in SVD patients and 12 ± 20% in shunt patients. Aortopulmonary collateral burden varied by 118 ± 84% over respiration in Fontan patients. The smallest collateral burden was measured during active inspiration in all patients and the greatest burden was during active expiration in four of five patients. Reduced respiratory resolution blunted measured flow changes in the caval veins of shunt and SVD patients (p < 0.005).</p><p><strong>Conclusions: </strong>Respiratory-resolved 5D flow MRI measurements agree with real-time 2D phase contrast. Venous measurements are sensitive to number of respiratory states, whereas arterial measurements are more robust. Respiration has a substantial impact on caval vein flow, Qp:Qs, and collateral burden in CHD patients.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417305/pdf/","citationCount":"0","resultStr":"{\"title\":\"Respiratory-resolved five-dimensional flow cardiovascular magnetic resonance : In-vivo validation and respiratory-dependent flow changes in healthy volunteers and patients with congenital heart disease.\",\"authors\":\"Elizabeth K Weiss, Justin Baraboo, Cynthia K Rigsby, Joshua D Robinson, Liliana Ma, Mariana B L Falcão, Christopher W Roy, Matthias Stuber, Michael Markl\",\"doi\":\"10.1016/j.jocmr.2024.101077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>This study aimed to validate respiratory-resolved five-dimensional (5D) flow cardiovascular magnetic resonance (CMR) against real-time two-dimensional (2D) phase-contrast MRI, assess the impact of number of respiratory states, and measure the impact of respiration on hemodynamics in congenital heart disease (CHD) patients.</p><p><strong>Methods: </strong>Respiratory-resolved 5D flow MRI-derived net and peak flow measurements were compared to real-time 2D phase-contrast MRI-derived measurements in 10 healthy volunteers. Pulmonary-to-systemic flow ratios (Qp:Qs) were measured in 19 CHD patients and aortopulmonary collateral burden was measured in 5 Fontan patients. Additionally, the impact of number of respiratory states on measured respiratory-driven net flow changes was investigated in 10 healthy volunteers and 19 CHD patients (shunt physiology, n = 11, single ventricle disease [SVD], n = 8).</p><p><strong>Results: </strong>There was good agreement between 5D flow MRI and real-time 2D phase-contrast-derived net and peak flow. Respiratory-driven changes had a good correlation (rho = 0.64, p < 0.001). In healthy volunteers, fewer than four respiratory states reduced measured respiratory-driven flow changes in veins (5.2 mL/cycle, p < 0.001) and arteries (1.7 mL/cycle, p = 0.05). Respiration drove substantial venous net flow changes in SVD (64% change) and shunt patients (57% change). Respiration had significantly greater impact in SVD patients compared to shunt patients in the right and left pulmonary arteries (46% vs 15%, p = 0.003 and 59% vs 20%, p = 0.002). Qp:Qs varied by 37 ± 24% over respiration in SVD patients and 12 ± 20% in shunt patients. Aortopulmonary collateral burden varied by 118 ± 84% over respiration in Fontan patients. The smallest collateral burden was measured during active inspiration in all patients and the greatest burden was during active expiration in four of five patients. Reduced respiratory resolution blunted measured flow changes in the caval veins of shunt and SVD patients (p < 0.005).</p><p><strong>Conclusions: </strong>Respiratory-resolved 5D flow MRI measurements agree with real-time 2D phase contrast. Venous measurements are sensitive to number of respiratory states, whereas arterial measurements are more robust. Respiration has a substantial impact on caval vein flow, Qp:Qs, and collateral burden in CHD patients.</p>\",\"PeriodicalId\":15221,\"journal\":{\"name\":\"Journal of Cardiovascular Magnetic Resonance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417305/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Magnetic Resonance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jocmr.2024.101077\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Magnetic Resonance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jocmr.2024.101077","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Respiratory-resolved five-dimensional flow cardiovascular magnetic resonance : In-vivo validation and respiratory-dependent flow changes in healthy volunteers and patients with congenital heart disease.
Background: This study aimed to validate respiratory-resolved five-dimensional (5D) flow cardiovascular magnetic resonance (CMR) against real-time two-dimensional (2D) phase-contrast MRI, assess the impact of number of respiratory states, and measure the impact of respiration on hemodynamics in congenital heart disease (CHD) patients.
Methods: Respiratory-resolved 5D flow MRI-derived net and peak flow measurements were compared to real-time 2D phase-contrast MRI-derived measurements in 10 healthy volunteers. Pulmonary-to-systemic flow ratios (Qp:Qs) were measured in 19 CHD patients and aortopulmonary collateral burden was measured in 5 Fontan patients. Additionally, the impact of number of respiratory states on measured respiratory-driven net flow changes was investigated in 10 healthy volunteers and 19 CHD patients (shunt physiology, n = 11, single ventricle disease [SVD], n = 8).
Results: There was good agreement between 5D flow MRI and real-time 2D phase-contrast-derived net and peak flow. Respiratory-driven changes had a good correlation (rho = 0.64, p < 0.001). In healthy volunteers, fewer than four respiratory states reduced measured respiratory-driven flow changes in veins (5.2 mL/cycle, p < 0.001) and arteries (1.7 mL/cycle, p = 0.05). Respiration drove substantial venous net flow changes in SVD (64% change) and shunt patients (57% change). Respiration had significantly greater impact in SVD patients compared to shunt patients in the right and left pulmonary arteries (46% vs 15%, p = 0.003 and 59% vs 20%, p = 0.002). Qp:Qs varied by 37 ± 24% over respiration in SVD patients and 12 ± 20% in shunt patients. Aortopulmonary collateral burden varied by 118 ± 84% over respiration in Fontan patients. The smallest collateral burden was measured during active inspiration in all patients and the greatest burden was during active expiration in four of five patients. Reduced respiratory resolution blunted measured flow changes in the caval veins of shunt and SVD patients (p < 0.005).
Conclusions: Respiratory-resolved 5D flow MRI measurements agree with real-time 2D phase contrast. Venous measurements are sensitive to number of respiratory states, whereas arterial measurements are more robust. Respiration has a substantial impact on caval vein flow, Qp:Qs, and collateral burden in CHD patients.
期刊介绍:
Journal of Cardiovascular Magnetic Resonance (JCMR) publishes high-quality articles on all aspects of basic, translational and clinical research on the design, development, manufacture, and evaluation of cardiovascular magnetic resonance (CMR) methods applied to the cardiovascular system. Topical areas include, but are not limited to:
New applications of magnetic resonance to improve the diagnostic strategies, risk stratification, characterization and management of diseases affecting the cardiovascular system.
New methods to enhance or accelerate image acquisition and data analysis.
Results of multicenter, or larger single-center studies that provide insight into the utility of CMR.
Basic biological perceptions derived by CMR methods.