"记忆或遗忘:早期植物胚胎表观遗传重编程和引物机制的启示"。

IF 8.3 2区 生物学 Q1 PLANT SCIENCES
Leonardo Jo , Michael D. Nodine
{"title":"\"记忆或遗忘:早期植物胚胎表观遗传重编程和引物机制的启示\"。","authors":"Leonardo Jo ,&nbsp;Michael D. Nodine","doi":"10.1016/j.pbi.2024.102612","DOIUrl":null,"url":null,"abstract":"<div><p>Chromatin is dynamically modified throughout the plant life cycle to regulate gene expression in response to environmental and developmental cues. Although such epigenetic information can be inherited across generations in plants, chromatin features that regulate gene expression are typically reprogrammed during plant gametogenesis and directly after fertilization. Nevertheless, environmentally induced epigenetic marks on genes can be transmitted across generations. Moreover, epigenetic information installed on early embryonic chromatin can be stably inherited during subsequent growth and influence how plants respond to environmental conditions much later in development. Here, we review recent breakthroughs towards deciphering mechanisms underlying epigenetic reprogramming and transcriptional priming during early plant embryogenesis.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102612"},"PeriodicalIF":8.3000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624001031/pdfft?md5=2b9b21c8fc8aabba081d2dcb7f524b10&pid=1-s2.0-S1369526624001031-main.pdf","citationCount":"0","resultStr":"{\"title\":\"“To remember or forget: Insights into the mechanisms of epigenetic reprogramming and priming in early plant embryos”\",\"authors\":\"Leonardo Jo ,&nbsp;Michael D. Nodine\",\"doi\":\"10.1016/j.pbi.2024.102612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chromatin is dynamically modified throughout the plant life cycle to regulate gene expression in response to environmental and developmental cues. Although such epigenetic information can be inherited across generations in plants, chromatin features that regulate gene expression are typically reprogrammed during plant gametogenesis and directly after fertilization. Nevertheless, environmentally induced epigenetic marks on genes can be transmitted across generations. Moreover, epigenetic information installed on early embryonic chromatin can be stably inherited during subsequent growth and influence how plants respond to environmental conditions much later in development. Here, we review recent breakthroughs towards deciphering mechanisms underlying epigenetic reprogramming and transcriptional priming during early plant embryogenesis.</p></div>\",\"PeriodicalId\":11003,\"journal\":{\"name\":\"Current opinion in plant biology\",\"volume\":\"81 \",\"pages\":\"Article 102612\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1369526624001031/pdfft?md5=2b9b21c8fc8aabba081d2dcb7f524b10&pid=1-s2.0-S1369526624001031-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in plant biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369526624001031\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526624001031","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

染色质在植物的整个生命周期中都会发生动态变化,以调节基因表达,对环境和发育线索做出响应。虽然这种表观遗传信息可以在植物中跨代遗传,但调控基因表达的染色质特征通常是在植物配子发生过程中和受精后直接重编程的。不过,环境诱导的基因表观遗传标记可以跨代传递。此外,安装在早期胚胎染色质上的表观遗传信息可在随后的生长过程中稳定遗传,并影响植物在发育后期对环境条件的反应。在此,我们回顾了最近在破译植物早期胚胎发生过程中表观遗传重编程和转录起始机制方面取得的突破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
“To remember or forget: Insights into the mechanisms of epigenetic reprogramming and priming in early plant embryos”

Chromatin is dynamically modified throughout the plant life cycle to regulate gene expression in response to environmental and developmental cues. Although such epigenetic information can be inherited across generations in plants, chromatin features that regulate gene expression are typically reprogrammed during plant gametogenesis and directly after fertilization. Nevertheless, environmentally induced epigenetic marks on genes can be transmitted across generations. Moreover, epigenetic information installed on early embryonic chromatin can be stably inherited during subsequent growth and influence how plants respond to environmental conditions much later in development. Here, we review recent breakthroughs towards deciphering mechanisms underlying epigenetic reprogramming and transcriptional priming during early plant embryogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in plant biology
Current opinion in plant biology 生物-植物科学
CiteScore
16.30
自引率
3.20%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信