{"title":"通过隐含溶剂中的能量景观探索评估 RNA 原子力场","authors":"Konstantin Röder, Samuela Pasquali","doi":"10.1007/s12551-024-01202-9","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting the structure and dynamics of RNA molecules still proves challenging because of the relative scarcity of experimental RNA structures on which to train models and the very sensitive nature of RNA towards its environment. In the last decade, several atomistic force fields specifically designed for RNA have been proposed and are commonly used for simulations. However, it is not necessarily clear which force field is the most suitable for a given RNA molecule. In this contribution, we propose the use of the computational energy landscape framework to explore the energy landscape of RNA systems as it can bring complementary information to the more standard approaches of enhanced sampling simulations based on molecular dynamics. We apply the EL framework to the study of a small RNA pseudoknot, the <i>Aquifex aeolicus</i> tmRNA pseudoknot PK1, and we compare the results of five different RNA force fields currently available in the AMBER simulation software, in implicit solvent. With this computational approach, we can not only compare the predicted 'native' states for the different force fields, but the method enables us to study metastable states as well. As a result, our comparison not only looks at structural features of low energy folded structures, but provides insight into folding pathways and higher energy excited states, opening to the possibility of assessing the validity of force fields also based on kinetics and experiments providing information on metastable and unfolded states.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12551-024-01202-9.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"16 3","pages":"285-295"},"PeriodicalIF":4.9000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297004/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessing RNA atomistic force fields via energy landscape explorations in implicit solvent.\",\"authors\":\"Konstantin Röder, Samuela Pasquali\",\"doi\":\"10.1007/s12551-024-01202-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Predicting the structure and dynamics of RNA molecules still proves challenging because of the relative scarcity of experimental RNA structures on which to train models and the very sensitive nature of RNA towards its environment. In the last decade, several atomistic force fields specifically designed for RNA have been proposed and are commonly used for simulations. However, it is not necessarily clear which force field is the most suitable for a given RNA molecule. In this contribution, we propose the use of the computational energy landscape framework to explore the energy landscape of RNA systems as it can bring complementary information to the more standard approaches of enhanced sampling simulations based on molecular dynamics. We apply the EL framework to the study of a small RNA pseudoknot, the <i>Aquifex aeolicus</i> tmRNA pseudoknot PK1, and we compare the results of five different RNA force fields currently available in the AMBER simulation software, in implicit solvent. With this computational approach, we can not only compare the predicted 'native' states for the different force fields, but the method enables us to study metastable states as well. As a result, our comparison not only looks at structural features of low energy folded structures, but provides insight into folding pathways and higher energy excited states, opening to the possibility of assessing the validity of force fields also based on kinetics and experiments providing information on metastable and unfolded states.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12551-024-01202-9.</p>\",\"PeriodicalId\":9094,\"journal\":{\"name\":\"Biophysical reviews\",\"volume\":\"16 3\",\"pages\":\"285-295\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297004/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12551-024-01202-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-024-01202-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Assessing RNA atomistic force fields via energy landscape explorations in implicit solvent.
Predicting the structure and dynamics of RNA molecules still proves challenging because of the relative scarcity of experimental RNA structures on which to train models and the very sensitive nature of RNA towards its environment. In the last decade, several atomistic force fields specifically designed for RNA have been proposed and are commonly used for simulations. However, it is not necessarily clear which force field is the most suitable for a given RNA molecule. In this contribution, we propose the use of the computational energy landscape framework to explore the energy landscape of RNA systems as it can bring complementary information to the more standard approaches of enhanced sampling simulations based on molecular dynamics. We apply the EL framework to the study of a small RNA pseudoknot, the Aquifex aeolicus tmRNA pseudoknot PK1, and we compare the results of five different RNA force fields currently available in the AMBER simulation software, in implicit solvent. With this computational approach, we can not only compare the predicted 'native' states for the different force fields, but the method enables us to study metastable states as well. As a result, our comparison not only looks at structural features of low energy folded structures, but provides insight into folding pathways and higher energy excited states, opening to the possibility of assessing the validity of force fields also based on kinetics and experiments providing information on metastable and unfolded states.
Supplementary information: The online version contains supplementary material available at 10.1007/s12551-024-01202-9.
期刊介绍:
Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation