综述基于树枝状聚合物的纳米共轭物及其在癌症光动力疗法中的细胞内迁移。

IF 4.5 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Lufuno Nemakhavhani, Heidi Abrahamse, Sathish Sundar Dhilip Kumar
{"title":"综述基于树枝状聚合物的纳米共轭物及其在癌症光动力疗法中的细胞内迁移。","authors":"Lufuno Nemakhavhani, Heidi Abrahamse, Sathish Sundar Dhilip Kumar","doi":"10.1080/21691401.2024.2368033","DOIUrl":null,"url":null,"abstract":"<p><p>Nanotechnology-based cancer treatment has received considerable attention, and these treatments generally use drug-loaded nanoparticles (NPs) to target and destroy cancer cells. Nanotechnology combined with photodynamic therapy (PDT) has demonstrated positive outcomes in cancer therapy. Combining nanotechnology and PDT is effective in targeting metastatic cancer cells. Nanotechnology can also increase the effectiveness of PDT by targeting cells at a molecular level. Dendrimer-based nanoconjugates (DBNs) are highly stable and biocompatible, making them suitable for drug delivery applications. Moreover, the hyperbranched structures in DBNs have the capacity to load hydrophobic compounds, such as photosensitizers (PSs) and chemotherapy drugs, and deliver them efficiently to tumour cells. This review primarily focuses on DBNs and their potential applications in cancer treatment. We discuss the chemical design, mechanism of action, and targeting efficiency of DBNs in tumour metastasis, intracellular trafficking in cancer treatment, and DBNs' biocompatibility, biodegradability and clearance properties. Overall, this study will provide the most recent insights into the application of DBNs and PDT in cancer therapy.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"384-398"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on dendrimer-based nanoconjugates and their intracellular trafficking in cancer photodynamic therapy.\",\"authors\":\"Lufuno Nemakhavhani, Heidi Abrahamse, Sathish Sundar Dhilip Kumar\",\"doi\":\"10.1080/21691401.2024.2368033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanotechnology-based cancer treatment has received considerable attention, and these treatments generally use drug-loaded nanoparticles (NPs) to target and destroy cancer cells. Nanotechnology combined with photodynamic therapy (PDT) has demonstrated positive outcomes in cancer therapy. Combining nanotechnology and PDT is effective in targeting metastatic cancer cells. Nanotechnology can also increase the effectiveness of PDT by targeting cells at a molecular level. Dendrimer-based nanoconjugates (DBNs) are highly stable and biocompatible, making them suitable for drug delivery applications. Moreover, the hyperbranched structures in DBNs have the capacity to load hydrophobic compounds, such as photosensitizers (PSs) and chemotherapy drugs, and deliver them efficiently to tumour cells. This review primarily focuses on DBNs and their potential applications in cancer treatment. We discuss the chemical design, mechanism of action, and targeting efficiency of DBNs in tumour metastasis, intracellular trafficking in cancer treatment, and DBNs' biocompatibility, biodegradability and clearance properties. Overall, this study will provide the most recent insights into the application of DBNs and PDT in cancer therapy.</p>\",\"PeriodicalId\":8736,\"journal\":{\"name\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"volume\":\"52 1\",\"pages\":\"384-398\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21691401.2024.2368033\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2024.2368033","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

以纳米技术为基础的癌症治疗方法受到了广泛关注,这些治疗方法通常使用载药纳米粒子(NPs)来靶向破坏癌细胞。纳米技术与光动力疗法(PDT)的结合在癌症治疗中取得了积极成果。将纳米技术与光动力疗法相结合可有效靶向转移癌细胞。纳米技术还可以通过在分子水平上靶向细胞来提高光动力疗法的效果。基于树枝状聚合物的纳米共轭物(DBNs)具有高度稳定性和生物相容性,适合药物输送应用。此外,DBNs 中的超支化结构能够负载疏水性化合物,如光敏剂(PSs)和化疗药物,并将它们有效地输送到肿瘤细胞中。本综述主要关注 DBN 及其在癌症治疗中的潜在应用。我们将讨论 DBNs 的化学设计、作用机理、在肿瘤转移中的靶向效率、癌症治疗中的细胞内转运以及 DBNs 的生物相容性、生物降解性和清除特性。总之,本研究将提供有关 DBNs 和光动力疗法在癌症治疗中应用的最新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review on dendrimer-based nanoconjugates and their intracellular trafficking in cancer photodynamic therapy.

Nanotechnology-based cancer treatment has received considerable attention, and these treatments generally use drug-loaded nanoparticles (NPs) to target and destroy cancer cells. Nanotechnology combined with photodynamic therapy (PDT) has demonstrated positive outcomes in cancer therapy. Combining nanotechnology and PDT is effective in targeting metastatic cancer cells. Nanotechnology can also increase the effectiveness of PDT by targeting cells at a molecular level. Dendrimer-based nanoconjugates (DBNs) are highly stable and biocompatible, making them suitable for drug delivery applications. Moreover, the hyperbranched structures in DBNs have the capacity to load hydrophobic compounds, such as photosensitizers (PSs) and chemotherapy drugs, and deliver them efficiently to tumour cells. This review primarily focuses on DBNs and their potential applications in cancer treatment. We discuss the chemical design, mechanism of action, and targeting efficiency of DBNs in tumour metastasis, intracellular trafficking in cancer treatment, and DBNs' biocompatibility, biodegradability and clearance properties. Overall, this study will provide the most recent insights into the application of DBNs and PDT in cancer therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Cells, Nanomedicine, and Biotechnology
Artificial Cells, Nanomedicine, and Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-ENGINEERING, BIOMEDICAL
CiteScore
10.90
自引率
0.00%
发文量
48
审稿时长
20 weeks
期刊介绍: Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信