Marco Bellotti, Enrica Chiesa, Bice Conti, Ida Genta, Michele Conti, Ferdinando Auricchio, Alessandro Caimi
{"title":"基于微流体的纳米粒子制造工艺优化计算辅助方法。","authors":"Marco Bellotti, Enrica Chiesa, Bice Conti, Ida Genta, Michele Conti, Ferdinando Auricchio, Alessandro Caimi","doi":"10.1007/s10439-024-03590-1","DOIUrl":null,"url":null,"abstract":"<p><p>In the last few years, the microfluidic production of nanoparticles (NPs) is becoming a promising alternative to conventional industrial approaches (e.g., nanoprecipitation, salting out, and emulsification-diffusion) thanks to the production efficiency, low variability, and high controllability of the production parameters. Nevertheless, the development of new formulations and the switching of the production process toward microfluidic platforms requires expensive and time-consuming number of experiments for the tuning of the formulation to obtain NPs with specific morphological and functional characteristics. In this work, we developed a computational fluid dynamic pipeline, validated through an ad hoc experimental strategy, to reproduce the mixing between the solvent and anti-solvent (i.e., acetonitrile and TRIS-HCl, respectively). Moreover, beyond the classical variables able to describe the mixing performances of the microfluidic chip, novel variables were described in order to assess the region of the NPs formation and the changing of the amplitude of the precipitation region according to different hydraulic conditions. The numerical approach proved to be able to capture a progressive reduction of the nanoprecipitation region due to an increment of the flow rate ratio; in parallel, through the experimental production, a progressive increment of the NPs size heterogeneity was observed with the same fluid dynamic conditions. Hence, the preliminary comparison between numerical and experimental evidence proved the effectiveness of the computational strategy to optimize the NPs manufacturing process.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational-Aided Approach for the Optimization of Microfluidic-Based Nanoparticles Manufacturing Process.\",\"authors\":\"Marco Bellotti, Enrica Chiesa, Bice Conti, Ida Genta, Michele Conti, Ferdinando Auricchio, Alessandro Caimi\",\"doi\":\"10.1007/s10439-024-03590-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the last few years, the microfluidic production of nanoparticles (NPs) is becoming a promising alternative to conventional industrial approaches (e.g., nanoprecipitation, salting out, and emulsification-diffusion) thanks to the production efficiency, low variability, and high controllability of the production parameters. Nevertheless, the development of new formulations and the switching of the production process toward microfluidic platforms requires expensive and time-consuming number of experiments for the tuning of the formulation to obtain NPs with specific morphological and functional characteristics. In this work, we developed a computational fluid dynamic pipeline, validated through an ad hoc experimental strategy, to reproduce the mixing between the solvent and anti-solvent (i.e., acetonitrile and TRIS-HCl, respectively). Moreover, beyond the classical variables able to describe the mixing performances of the microfluidic chip, novel variables were described in order to assess the region of the NPs formation and the changing of the amplitude of the precipitation region according to different hydraulic conditions. The numerical approach proved to be able to capture a progressive reduction of the nanoprecipitation region due to an increment of the flow rate ratio; in parallel, through the experimental production, a progressive increment of the NPs size heterogeneity was observed with the same fluid dynamic conditions. Hence, the preliminary comparison between numerical and experimental evidence proved the effectiveness of the computational strategy to optimize the NPs manufacturing process.</p>\",\"PeriodicalId\":7986,\"journal\":{\"name\":\"Annals of Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10439-024-03590-1\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-024-03590-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Computational-Aided Approach for the Optimization of Microfluidic-Based Nanoparticles Manufacturing Process.
In the last few years, the microfluidic production of nanoparticles (NPs) is becoming a promising alternative to conventional industrial approaches (e.g., nanoprecipitation, salting out, and emulsification-diffusion) thanks to the production efficiency, low variability, and high controllability of the production parameters. Nevertheless, the development of new formulations and the switching of the production process toward microfluidic platforms requires expensive and time-consuming number of experiments for the tuning of the formulation to obtain NPs with specific morphological and functional characteristics. In this work, we developed a computational fluid dynamic pipeline, validated through an ad hoc experimental strategy, to reproduce the mixing between the solvent and anti-solvent (i.e., acetonitrile and TRIS-HCl, respectively). Moreover, beyond the classical variables able to describe the mixing performances of the microfluidic chip, novel variables were described in order to assess the region of the NPs formation and the changing of the amplitude of the precipitation region according to different hydraulic conditions. The numerical approach proved to be able to capture a progressive reduction of the nanoprecipitation region due to an increment of the flow rate ratio; in parallel, through the experimental production, a progressive increment of the NPs size heterogeneity was observed with the same fluid dynamic conditions. Hence, the preliminary comparison between numerical and experimental evidence proved the effectiveness of the computational strategy to optimize the NPs manufacturing process.
期刊介绍:
Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.