{"title":"应用人工骨架连接技术开发金属酶模拟物。","authors":"Jacob A. Wolfe, W. Seth Horne","doi":"10.1016/j.cbpa.2024.102509","DOIUrl":null,"url":null,"abstract":"<div><p>Metal-dependent enzymes are abundant and vital catalytic agents in nature. The functional versatility of metalloenzymes has made them common targets for improvement by protein engineering as well as mimicry by <em>de novo</em> designed sequences. In both strategies, the incorporation of non-canonical cofactors and/or non-canonical side chains has proved a useful tool. Less explored—but similarly powerful—is the utilization of non-canonical covalent modifications to the polypeptide backbone itself. Such efforts can entail either introduction of limited artificial monomers in natural chains to produce heterogeneous backbones or construction of completely abiotic oligomers that adopt defined folds. Herein, we review recent research applying artificial protein-like backbones in the construction of metalloenzyme mimics, highlighting progress as well as open questions in this emerging field.</p></div>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367593124000851/pdfft?md5=7682c3330f9c6aad812ea489aee31afc&pid=1-s2.0-S1367593124000851-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Application of artificial backbone connectivity in the development of metalloenzyme mimics\",\"authors\":\"Jacob A. Wolfe, W. Seth Horne\",\"doi\":\"10.1016/j.cbpa.2024.102509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metal-dependent enzymes are abundant and vital catalytic agents in nature. The functional versatility of metalloenzymes has made them common targets for improvement by protein engineering as well as mimicry by <em>de novo</em> designed sequences. In both strategies, the incorporation of non-canonical cofactors and/or non-canonical side chains has proved a useful tool. Less explored—but similarly powerful—is the utilization of non-canonical covalent modifications to the polypeptide backbone itself. Such efforts can entail either introduction of limited artificial monomers in natural chains to produce heterogeneous backbones or construction of completely abiotic oligomers that adopt defined folds. Herein, we review recent research applying artificial protein-like backbones in the construction of metalloenzyme mimics, highlighting progress as well as open questions in this emerging field.</p></div>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1367593124000851/pdfft?md5=7682c3330f9c6aad812ea489aee31afc&pid=1-s2.0-S1367593124000851-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367593124000851\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367593124000851","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Application of artificial backbone connectivity in the development of metalloenzyme mimics
Metal-dependent enzymes are abundant and vital catalytic agents in nature. The functional versatility of metalloenzymes has made them common targets for improvement by protein engineering as well as mimicry by de novo designed sequences. In both strategies, the incorporation of non-canonical cofactors and/or non-canonical side chains has proved a useful tool. Less explored—but similarly powerful—is the utilization of non-canonical covalent modifications to the polypeptide backbone itself. Such efforts can entail either introduction of limited artificial monomers in natural chains to produce heterogeneous backbones or construction of completely abiotic oligomers that adopt defined folds. Herein, we review recent research applying artificial protein-like backbones in the construction of metalloenzyme mimics, highlighting progress as well as open questions in this emerging field.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.