{"title":"固态表面活性剂模板用于受控合成无定形二维氧化物/氧化氢纳米片","authors":"Eisuke Yamamoto, Daiki Kurimoto, Kentaro Ito, Kohei Hayashi, Makoto Kobayashi, Minoru Osada","doi":"10.1038/s41467-024-51040-2","DOIUrl":null,"url":null,"abstract":"<p>As a member of 2D family, amorphous 2D nanosheets have received increasing attention due to their unique properties that are distinct from crystalline 2D nanosheets. However, compared with the vast library of crystalline 2D nanosheets, amorphous 2D nanosheets are still infancy due to the lack of an efficient synthetic approach. Here, we present a strategy that yields a library of 10 distinct amorphous 2D metal oxides/oxyhydroxides using solid-state surfactant crystals. A key feature of this process is a stepwise reaction using solid surfactant; the solid-state surfactant crystals have metal ions arranged in the interlayer space, and hydrolysis of the metal ions leads to the formation of isolated clusters in the surfactant crystals via limited condensation reactions. Immersing the surfactant crystals in formamide promotes nanosheet formation through the self-assembly of clusters by templating the morphologies of the crystals generated from surfactants crystals. Our approach opens a flatland in amorphous 2D world.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"39 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solid-state surfactant templating for controlled synthesis of amorphous 2D oxide/oxyhydroxide nanosheets\",\"authors\":\"Eisuke Yamamoto, Daiki Kurimoto, Kentaro Ito, Kohei Hayashi, Makoto Kobayashi, Minoru Osada\",\"doi\":\"10.1038/s41467-024-51040-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As a member of 2D family, amorphous 2D nanosheets have received increasing attention due to their unique properties that are distinct from crystalline 2D nanosheets. However, compared with the vast library of crystalline 2D nanosheets, amorphous 2D nanosheets are still infancy due to the lack of an efficient synthetic approach. Here, we present a strategy that yields a library of 10 distinct amorphous 2D metal oxides/oxyhydroxides using solid-state surfactant crystals. A key feature of this process is a stepwise reaction using solid surfactant; the solid-state surfactant crystals have metal ions arranged in the interlayer space, and hydrolysis of the metal ions leads to the formation of isolated clusters in the surfactant crystals via limited condensation reactions. Immersing the surfactant crystals in formamide promotes nanosheet formation through the self-assembly of clusters by templating the morphologies of the crystals generated from surfactants crystals. Our approach opens a flatland in amorphous 2D world.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-51040-2\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-51040-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Solid-state surfactant templating for controlled synthesis of amorphous 2D oxide/oxyhydroxide nanosheets
As a member of 2D family, amorphous 2D nanosheets have received increasing attention due to their unique properties that are distinct from crystalline 2D nanosheets. However, compared with the vast library of crystalline 2D nanosheets, amorphous 2D nanosheets are still infancy due to the lack of an efficient synthetic approach. Here, we present a strategy that yields a library of 10 distinct amorphous 2D metal oxides/oxyhydroxides using solid-state surfactant crystals. A key feature of this process is a stepwise reaction using solid surfactant; the solid-state surfactant crystals have metal ions arranged in the interlayer space, and hydrolysis of the metal ions leads to the formation of isolated clusters in the surfactant crystals via limited condensation reactions. Immersing the surfactant crystals in formamide promotes nanosheet formation through the self-assembly of clusters by templating the morphologies of the crystals generated from surfactants crystals. Our approach opens a flatland in amorphous 2D world.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.