流变聚合物的非线性时变行为:理论与实验研究

IF 5 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Alen Oseli, Mohor Mihelčič, Matic Šobak, Lidija Slemenik Perše
{"title":"流变聚合物的非线性时变行为:理论与实验研究","authors":"Alen Oseli,&nbsp;Mohor Mihelčič,&nbsp;Matic Šobak,&nbsp;Lidija Slemenik Perše","doi":"10.1016/j.polymertesting.2024.108535","DOIUrl":null,"url":null,"abstract":"<div><p>The present study examined the nonlinear time-dependent behavior of rheodictic polymers, a class of noncrosslinked materials that exhibit flow. Such behavior was addressed with extended Schapery's nonlinear viscoelastic model by introducing new physical quantities, i.e., the flow term <span><math><mrow><msub><mi>Φ</mi><mtext>flow</mtext></msub></mrow></math></span> and corresponding nonlinear shift parameter <span><math><mrow><msub><mi>g</mi><mrow><mn>2</mn><mo>,</mo><mtext>flow</mtext></mrow></msub></mrow></math></span>. While <span><math><mrow><msub><mi>Φ</mi><mtext>flow</mtext></msub></mrow></math></span> portrays irrecoverable deformation, <span><math><mrow><msub><mi>g</mi><mrow><mn>2</mn><mo>,</mo><mtext>flow</mtext></mrow></msub></mrow></math></span> depicts a nonlinear contribution to flow acceleration. This theory was accompanied by analytical and experimental methodologies for identifying all the parameters in the linear and nonlinear viscoelastic domains. Predictions of long-term time-dependent behavior (in shear) at various stress states show excellent agreement with the experimental data, i.e., within <span><math><mrow><mn>5</mn><mo>%</mo></mrow></math></span> error, obtained for polycarbonate at <span><math><mrow><mrow><mn>130</mn><mo>°</mo></mrow><mi>C</mi></mrow></math></span>. Surprisingly, the newly introduced <span><math><mrow><msub><mi>g</mi><mrow><mn>2</mn><mo>,</mo><mtext>flow</mtext></mrow></msub></mrow></math></span> indicates that flow retardation occurs with increasing stress, implying that a highly deformed entangled system hinders molecular reptation/disentanglement. Nevertheless, the proposed extension of Schapery's nonlinear viscoelastic model not only allows accurate predictions of the nonlinear time-dependent behavior of rheodictic polymers but also enables a detailed outlook on the underlying molecular mechanisms under severe environmental and loading conditions.</p></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"137 ","pages":"Article 108535"},"PeriodicalIF":5.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142941824002125/pdfft?md5=18f60756ee514412e4db7cefa0e1a59b&pid=1-s2.0-S0142941824002125-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nonlinear time-dependent behavior of rheodictic polymers: A theoretical and experimental investigation\",\"authors\":\"Alen Oseli,&nbsp;Mohor Mihelčič,&nbsp;Matic Šobak,&nbsp;Lidija Slemenik Perše\",\"doi\":\"10.1016/j.polymertesting.2024.108535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present study examined the nonlinear time-dependent behavior of rheodictic polymers, a class of noncrosslinked materials that exhibit flow. Such behavior was addressed with extended Schapery's nonlinear viscoelastic model by introducing new physical quantities, i.e., the flow term <span><math><mrow><msub><mi>Φ</mi><mtext>flow</mtext></msub></mrow></math></span> and corresponding nonlinear shift parameter <span><math><mrow><msub><mi>g</mi><mrow><mn>2</mn><mo>,</mo><mtext>flow</mtext></mrow></msub></mrow></math></span>. While <span><math><mrow><msub><mi>Φ</mi><mtext>flow</mtext></msub></mrow></math></span> portrays irrecoverable deformation, <span><math><mrow><msub><mi>g</mi><mrow><mn>2</mn><mo>,</mo><mtext>flow</mtext></mrow></msub></mrow></math></span> depicts a nonlinear contribution to flow acceleration. This theory was accompanied by analytical and experimental methodologies for identifying all the parameters in the linear and nonlinear viscoelastic domains. Predictions of long-term time-dependent behavior (in shear) at various stress states show excellent agreement with the experimental data, i.e., within <span><math><mrow><mn>5</mn><mo>%</mo></mrow></math></span> error, obtained for polycarbonate at <span><math><mrow><mrow><mn>130</mn><mo>°</mo></mrow><mi>C</mi></mrow></math></span>. Surprisingly, the newly introduced <span><math><mrow><msub><mi>g</mi><mrow><mn>2</mn><mo>,</mo><mtext>flow</mtext></mrow></msub></mrow></math></span> indicates that flow retardation occurs with increasing stress, implying that a highly deformed entangled system hinders molecular reptation/disentanglement. Nevertheless, the proposed extension of Schapery's nonlinear viscoelastic model not only allows accurate predictions of the nonlinear time-dependent behavior of rheodictic polymers but also enables a detailed outlook on the underlying molecular mechanisms under severe environmental and loading conditions.</p></div>\",\"PeriodicalId\":20628,\"journal\":{\"name\":\"Polymer Testing\",\"volume\":\"137 \",\"pages\":\"Article 108535\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0142941824002125/pdfft?md5=18f60756ee514412e4db7cefa0e1a59b&pid=1-s2.0-S0142941824002125-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142941824002125\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941824002125","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

流变聚合物是一类具有流动性的非交联材料,本研究考察了流变聚合物的非线性随时间变化的行为。通过引入新的物理量,即流动项和相应的非线性位移参数,对 Schapery 的非线性粘弹性模型进行了扩展。在描述不可恢复变形的同时,也描述了对流动加速度的非线性贡献。该理论采用分析和实验方法来确定线性和非线性粘弹性领域的所有参数。对各种应力状态下的长期随时间变化的行为(剪切)的预测显示,与实验数据非常吻合,即在聚碳酸酯在......时的误差范围内。令人惊讶的是,新引入的数据表明,随着应力的增加,流动会发生延迟,这意味着高度变形的纠缠系统会阻碍分子的重排/解纠缠。尽管如此,对 Schapery 非线性粘弹性模型的扩展建议不仅能准确预测流变聚合物的非线性随时间变化的行为,还能详细了解其在恶劣环境和负载条件下的基本分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear time-dependent behavior of rheodictic polymers: A theoretical and experimental investigation

The present study examined the nonlinear time-dependent behavior of rheodictic polymers, a class of noncrosslinked materials that exhibit flow. Such behavior was addressed with extended Schapery's nonlinear viscoelastic model by introducing new physical quantities, i.e., the flow term Φflow and corresponding nonlinear shift parameter g2,flow. While Φflow portrays irrecoverable deformation, g2,flow depicts a nonlinear contribution to flow acceleration. This theory was accompanied by analytical and experimental methodologies for identifying all the parameters in the linear and nonlinear viscoelastic domains. Predictions of long-term time-dependent behavior (in shear) at various stress states show excellent agreement with the experimental data, i.e., within 5% error, obtained for polycarbonate at 130°C. Surprisingly, the newly introduced g2,flow indicates that flow retardation occurs with increasing stress, implying that a highly deformed entangled system hinders molecular reptation/disentanglement. Nevertheless, the proposed extension of Schapery's nonlinear viscoelastic model not only allows accurate predictions of the nonlinear time-dependent behavior of rheodictic polymers but also enables a detailed outlook on the underlying molecular mechanisms under severe environmental and loading conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Testing
Polymer Testing 工程技术-材料科学:表征与测试
CiteScore
10.70
自引率
5.90%
发文量
328
审稿时长
44 days
期刊介绍: Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization. The scope includes but is not limited to the following main topics: Novel testing methods and Chemical analysis • mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology Physical properties and behaviour of novel polymer systems • nanoscale properties, morphology, transport properties Degradation and recycling of polymeric materials when combined with novel testing or characterization methods • degradation, biodegradation, ageing and fire retardancy Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信