CeO2/CuO 催化剂表面重构诱导的价态和氧空位协同调控可增强二氧化碳的电化学还原能力

IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Carbon Energy Pub Date : 2024-08-02 DOI:10.1002/cey2.588
Fangfang Chang, Zhenmao Zhang, Yan Zhang, Yongpeng Liu, Lin Yang, Xiaolei Wang, Zhengyu Bai, Qing Zhang
{"title":"CeO2/CuO 催化剂表面重构诱导的价态和氧空位协同调控可增强二氧化碳的电化学还原能力","authors":"Fangfang Chang, Zhenmao Zhang, Yan Zhang, Yongpeng Liu, Lin Yang, Xiaolei Wang, Zhengyu Bai, Qing Zhang","doi":"10.1002/cey2.588","DOIUrl":null,"url":null,"abstract":"Electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) offers a promising strategy for CO<sub>2</sub> conversion into value-added C<sub>2+</sub> products and facilitates the storage of renewable resources under comparatively mild conditions, but still remains a challenge. Herein, we propose the strategy of surface reconstruction and interface integration engineering to construct tuneable Cu<sup>0</sup>–Cu<sup>+</sup>–Cu<sup>2+</sup> sites and oxygen vacancy oxide derived from CeO<sub>2</sub>/CuO nanosheets (OD-CeO<sub>2</sub>/CuO NSs) heterojunction catalysts and promote the activity and selectivity of CO<sub>2</sub>RR. The optimized OD-CeO<sub>2</sub>/CuO electrocatalyst shows the maximum Faradic efficiencies for C<sub>2+</sub> products in the H-type cell, which reaches 69.8% at −1.25 V versus a reversible hydrogen electrode (RHE). Advanced characterization analysis and density functional theory (DFT) calculations further confirm the fact that the existence of oxygen vacancies and Cu<sup>0</sup>–Cu<sup>+</sup>–Cu<sup>2+</sup> sites modified with CeO<sub>2</sub> is conducive to CO<sub>2</sub> adsorption and activation, enhances the hydrogenation of *CO to *CHO, and further promotes the dimerization of *CHO, thus promoting the selectivity of C<sub>2+</sub> generation. This facile interface integration and surface reconstruction strategy provides an ideal strategy to guide the design of CO<sub>2</sub>RR electrocatalysts.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":19.5000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic modulation of valence state and oxygen vacancy induced by surface reconstruction of the CeO2/CuO catalyst toward enhanced electrochemical CO2 reduction\",\"authors\":\"Fangfang Chang, Zhenmao Zhang, Yan Zhang, Yongpeng Liu, Lin Yang, Xiaolei Wang, Zhengyu Bai, Qing Zhang\",\"doi\":\"10.1002/cey2.588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) offers a promising strategy for CO<sub>2</sub> conversion into value-added C<sub>2+</sub> products and facilitates the storage of renewable resources under comparatively mild conditions, but still remains a challenge. Herein, we propose the strategy of surface reconstruction and interface integration engineering to construct tuneable Cu<sup>0</sup>–Cu<sup>+</sup>–Cu<sup>2+</sup> sites and oxygen vacancy oxide derived from CeO<sub>2</sub>/CuO nanosheets (OD-CeO<sub>2</sub>/CuO NSs) heterojunction catalysts and promote the activity and selectivity of CO<sub>2</sub>RR. The optimized OD-CeO<sub>2</sub>/CuO electrocatalyst shows the maximum Faradic efficiencies for C<sub>2+</sub> products in the H-type cell, which reaches 69.8% at −1.25 V versus a reversible hydrogen electrode (RHE). Advanced characterization analysis and density functional theory (DFT) calculations further confirm the fact that the existence of oxygen vacancies and Cu<sup>0</sup>–Cu<sup>+</sup>–Cu<sup>2+</sup> sites modified with CeO<sub>2</sub> is conducive to CO<sub>2</sub> adsorption and activation, enhances the hydrogenation of *CO to *CHO, and further promotes the dimerization of *CHO, thus promoting the selectivity of C<sub>2+</sub> generation. This facile interface integration and surface reconstruction strategy provides an ideal strategy to guide the design of CO<sub>2</sub>RR electrocatalysts.\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.5000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/cey2.588\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/cey2.588","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电化学二氧化碳还原反应(CO2RR)为将二氧化碳转化为高附加值的 C2+ 产品提供了一种前景广阔的策略,并有助于在相对温和的条件下储存可再生资源,但这仍然是一项挑战。在此,我们提出了表面重构和界面整合工程的策略,以构建可调的 Cu0-Cu+-Cu2+ 位点和源于 CeO2/CuO 纳米片的氧空位氧化物(OD-CeO2/CuO NSs)异质结合催化剂,并提高 CO2RR 的活性和选择性。优化的 OD-CeO2/CuO 电催化剂在 H 型电池中显示出最大的 C2+ 产物法拉第效率,与可逆氢电极 (RHE) 相比,在 -1.25 V 时达到 69.8%。先进的表征分析和密度泛函理论(DFT)计算进一步证实,CeO2修饰的氧空位和Cu0-Cu+-Cu2+位点的存在有利于二氧化碳的吸附和活化,增强了*CO向*CHO的氢化,并进一步促进了*CHO的二聚化,从而提高了C2+生成的选择性。这种简便的界面整合和表面重构策略为 CO2RR 电催化剂的设计提供了理想的指导策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic modulation of valence state and oxygen vacancy induced by surface reconstruction of the CeO2/CuO catalyst toward enhanced electrochemical CO2 reduction

Synergistic modulation of valence state and oxygen vacancy induced by surface reconstruction of the CeO2/CuO catalyst toward enhanced electrochemical CO2 reduction
Electrochemical CO2 reduction reaction (CO2RR) offers a promising strategy for CO2 conversion into value-added C2+ products and facilitates the storage of renewable resources under comparatively mild conditions, but still remains a challenge. Herein, we propose the strategy of surface reconstruction and interface integration engineering to construct tuneable Cu0–Cu+–Cu2+ sites and oxygen vacancy oxide derived from CeO2/CuO nanosheets (OD-CeO2/CuO NSs) heterojunction catalysts and promote the activity and selectivity of CO2RR. The optimized OD-CeO2/CuO electrocatalyst shows the maximum Faradic efficiencies for C2+ products in the H-type cell, which reaches 69.8% at −1.25 V versus a reversible hydrogen electrode (RHE). Advanced characterization analysis and density functional theory (DFT) calculations further confirm the fact that the existence of oxygen vacancies and Cu0–Cu+–Cu2+ sites modified with CeO2 is conducive to CO2 adsorption and activation, enhances the hydrogenation of *CO to *CHO, and further promotes the dimerization of *CHO, thus promoting the selectivity of C2+ generation. This facile interface integration and surface reconstruction strategy provides an ideal strategy to guide the design of CO2RR electrocatalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信