Nguyen Thi Kim Oanh, Lai Nguyen Huy, Wiphada Maneepatra, Ekbordin Winijkul, Adam Giandomenico, Kraichat Tantrakarnapa, Hoang Xuan Co, Dinh Manh Cuong, Ming-Chien Mark Tsou, To Thi Hien, Nguyen Doan Thien Chi, Tran Anh Ngan, S. C. Candice Lung
{"title":"与部分亚洲国家常见烹饪方法相关的各种微环境中 PM2.5 水平的比较分析","authors":"Nguyen Thi Kim Oanh, Lai Nguyen Huy, Wiphada Maneepatra, Ekbordin Winijkul, Adam Giandomenico, Kraichat Tantrakarnapa, Hoang Xuan Co, Dinh Manh Cuong, Ming-Chien Mark Tsou, To Thi Hien, Nguyen Doan Thien Chi, Tran Anh Ngan, S. C. Candice Lung","doi":"10.1007/s11869-024-01615-1","DOIUrl":null,"url":null,"abstract":"<div><p>Effects of real-life cooking activities on PM<sub>2.5</sub> in different urban microenvironments of crowded and large metropolitan areas in Asia were comprehensively analyzed. The assessment was done based on monitoring data obtained for commercial cooking in a university campus in Thailand, restaurants in Taiwan, street food vendors, and residential cooking in Vietnam. Online instruments used for PM<sub>2.5</sub> monitoring were <i>priori</i> calibrated against the reference equipment. The influence of cooking activities on indoor and outdoor PM<sub>2.5</sub> levels was evaluated considering ventilation conditions and the type of fuel-cookstove of liquefied petroleum gas (LPG), charcoal, rice straw pellets (RSP), and honeycomb coal briquettes (HCB). Higher levels of PM<sub>2.5</sub> were observed during intensive cooking periods than in non-cooking periods. Cooking with solid fuel (RSP, charcoal, and HCB) induced higher exposure levels of PM<sub>2.5</sub> than LPG. The fuel stoking practice, size and design of stoves (with or without hood/exhaust fan), and type of food being cooked (steaming or meat grilling) were important factors affecting the PM<sub>2.5</sub> levels. Other important factors especially affecting indoor PM<sub>2.5</sub> levels included ventilation, outdoor emissions (traffic, nearby cooking activities), indoor sources (number of customers), and incense burning. The ambient pollution in the surroundings of the microenvironments may contribute significantly to measured PM<sub>2.5</sub> levels, especially for the locations close to busy roads or in areas with heavy traffic. Further studies are required to assess the impact of exposure to cooking-induced PM<sub>2.5</sub> emissions on human health to provide scientific evidence to foster clean cooking practices.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 12","pages":"2967 - 2984"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of PM2.5 levels in various microenvironments associated with common cooking practices in selected Asian countries\",\"authors\":\"Nguyen Thi Kim Oanh, Lai Nguyen Huy, Wiphada Maneepatra, Ekbordin Winijkul, Adam Giandomenico, Kraichat Tantrakarnapa, Hoang Xuan Co, Dinh Manh Cuong, Ming-Chien Mark Tsou, To Thi Hien, Nguyen Doan Thien Chi, Tran Anh Ngan, S. C. Candice Lung\",\"doi\":\"10.1007/s11869-024-01615-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Effects of real-life cooking activities on PM<sub>2.5</sub> in different urban microenvironments of crowded and large metropolitan areas in Asia were comprehensively analyzed. The assessment was done based on monitoring data obtained for commercial cooking in a university campus in Thailand, restaurants in Taiwan, street food vendors, and residential cooking in Vietnam. Online instruments used for PM<sub>2.5</sub> monitoring were <i>priori</i> calibrated against the reference equipment. The influence of cooking activities on indoor and outdoor PM<sub>2.5</sub> levels was evaluated considering ventilation conditions and the type of fuel-cookstove of liquefied petroleum gas (LPG), charcoal, rice straw pellets (RSP), and honeycomb coal briquettes (HCB). Higher levels of PM<sub>2.5</sub> were observed during intensive cooking periods than in non-cooking periods. Cooking with solid fuel (RSP, charcoal, and HCB) induced higher exposure levels of PM<sub>2.5</sub> than LPG. The fuel stoking practice, size and design of stoves (with or without hood/exhaust fan), and type of food being cooked (steaming or meat grilling) were important factors affecting the PM<sub>2.5</sub> levels. Other important factors especially affecting indoor PM<sub>2.5</sub> levels included ventilation, outdoor emissions (traffic, nearby cooking activities), indoor sources (number of customers), and incense burning. The ambient pollution in the surroundings of the microenvironments may contribute significantly to measured PM<sub>2.5</sub> levels, especially for the locations close to busy roads or in areas with heavy traffic. Further studies are required to assess the impact of exposure to cooking-induced PM<sub>2.5</sub> emissions on human health to provide scientific evidence to foster clean cooking practices.</p></div>\",\"PeriodicalId\":49109,\"journal\":{\"name\":\"Air Quality Atmosphere and Health\",\"volume\":\"17 12\",\"pages\":\"2967 - 2984\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Air Quality Atmosphere and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11869-024-01615-1\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Quality Atmosphere and Health","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11869-024-01615-1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Comparative analysis of PM2.5 levels in various microenvironments associated with common cooking practices in selected Asian countries
Effects of real-life cooking activities on PM2.5 in different urban microenvironments of crowded and large metropolitan areas in Asia were comprehensively analyzed. The assessment was done based on monitoring data obtained for commercial cooking in a university campus in Thailand, restaurants in Taiwan, street food vendors, and residential cooking in Vietnam. Online instruments used for PM2.5 monitoring were priori calibrated against the reference equipment. The influence of cooking activities on indoor and outdoor PM2.5 levels was evaluated considering ventilation conditions and the type of fuel-cookstove of liquefied petroleum gas (LPG), charcoal, rice straw pellets (RSP), and honeycomb coal briquettes (HCB). Higher levels of PM2.5 were observed during intensive cooking periods than in non-cooking periods. Cooking with solid fuel (RSP, charcoal, and HCB) induced higher exposure levels of PM2.5 than LPG. The fuel stoking practice, size and design of stoves (with or without hood/exhaust fan), and type of food being cooked (steaming or meat grilling) were important factors affecting the PM2.5 levels. Other important factors especially affecting indoor PM2.5 levels included ventilation, outdoor emissions (traffic, nearby cooking activities), indoor sources (number of customers), and incense burning. The ambient pollution in the surroundings of the microenvironments may contribute significantly to measured PM2.5 levels, especially for the locations close to busy roads or in areas with heavy traffic. Further studies are required to assess the impact of exposure to cooking-induced PM2.5 emissions on human health to provide scientific evidence to foster clean cooking practices.
期刊介绍:
Air Quality, Atmosphere, and Health is a multidisciplinary journal which, by its very name, illustrates the broad range of work it publishes and which focuses on atmospheric consequences of human activities and their implications for human and ecological health.
It offers research papers, critical literature reviews and commentaries, as well as special issues devoted to topical subjects or themes.
International in scope, the journal presents papers that inform and stimulate a global readership, as the topic addressed are global in their import. Consequently, we do not encourage submission of papers involving local data that relate to local problems. Unless they demonstrate wide applicability, these are better submitted to national or regional journals.
Air Quality, Atmosphere & Health addresses such topics as acid precipitation; airborne particulate matter; air quality monitoring and management; exposure assessment; risk assessment; indoor air quality; atmospheric chemistry; atmospheric modeling and prediction; air pollution climatology; climate change and air quality; air pollution measurement; atmospheric impact assessment; forest-fire emissions; atmospheric science; greenhouse gases; health and ecological effects; clean air technology; regional and global change and satellite measurements.
This journal benefits a diverse audience of researchers, public health officials and policy makers addressing problems that call for solutions based in evidence from atmospheric and exposure assessment scientists, epidemiologists, and risk assessors. Publication in the journal affords the opportunity to reach beyond defined disciplinary niches to this broader readership.