关于有限群法典的说明

IF 0.5 4区 数学 Q3 MATHEMATICS
Mark L. Lewis, Quanfu Yan
{"title":"关于有限群法典的说明","authors":"Mark L. Lewis,&nbsp;Quanfu Yan","doi":"10.1007/s10468-024-10282-w","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\chi \\)</span> be an irreducible character of a group <i>G</i>,  and <span>\\(S_c(G)=\\sum _{\\chi \\in \\textrm{Irr}(G)}\\textrm{cod}(\\chi )\\)</span> be the sum of the codegrees of the irreducible characters of <i>G</i>. Write <span>\\(\\textrm{fcod} (G)=\\frac{S_c(G)}{|G|}.\\)</span> We aim to explore the structure of finite groups in terms of <span>\\(\\textrm{fcod} (G).\\)</span> On the other hand, we determine the lower bound of <span>\\(S_c(G)\\)</span> for nonsolvable groups and prove that if <i>G</i> is nonsolvable, then <span>\\(S_c(G)\\geqslant S_c(A_5)=68,\\)</span> with equality if and only if <span>\\(G\\cong A_5.\\)</span> Additionally, we show that there is a solvable group so that it has the codegree sum as <span>\\(A_5.\\)</span></p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 5","pages":"1799 - 1804"},"PeriodicalIF":0.5000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-024-10282-w.pdf","citationCount":"0","resultStr":"{\"title\":\"A Note on the Codegree of Finite Groups\",\"authors\":\"Mark L. Lewis,&nbsp;Quanfu Yan\",\"doi\":\"10.1007/s10468-024-10282-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\chi \\\\)</span> be an irreducible character of a group <i>G</i>,  and <span>\\\\(S_c(G)=\\\\sum _{\\\\chi \\\\in \\\\textrm{Irr}(G)}\\\\textrm{cod}(\\\\chi )\\\\)</span> be the sum of the codegrees of the irreducible characters of <i>G</i>. Write <span>\\\\(\\\\textrm{fcod} (G)=\\\\frac{S_c(G)}{|G|}.\\\\)</span> We aim to explore the structure of finite groups in terms of <span>\\\\(\\\\textrm{fcod} (G).\\\\)</span> On the other hand, we determine the lower bound of <span>\\\\(S_c(G)\\\\)</span> for nonsolvable groups and prove that if <i>G</i> is nonsolvable, then <span>\\\\(S_c(G)\\\\geqslant S_c(A_5)=68,\\\\)</span> with equality if and only if <span>\\\\(G\\\\cong A_5.\\\\)</span> Additionally, we show that there is a solvable group so that it has the codegree sum as <span>\\\\(A_5.\\\\)</span></p></div>\",\"PeriodicalId\":50825,\"journal\":{\"name\":\"Algebras and Representation Theory\",\"volume\":\"27 5\",\"pages\":\"1799 - 1804\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10468-024-10282-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebras and Representation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-024-10282-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10282-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \(\chi \) 是一个群 G 的不可还原字符,并且 \(S_c(G)=sum _{\chi \in \textrm{Irr}(G)}\textrm{cod}(\chi )\) 是 G 的不可还原字符的编码度之和。我们的目的是用\(\textrm{fcod} (G).\) 来探索有限群的结构。另一方面,我们确定了不可解群的\(S_c(G)\)下界,并证明了如果 G 是不可解的,那么当且仅当\(G\cong A_5.\) 时,\(S_c(G)\geqslant S_c(A_5)=68,\) 是相等的 此外,我们还证明了存在一个可解群,使得它具有\(A_5.\)的codegree sum。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on the Codegree of Finite Groups

Let \(\chi \) be an irreducible character of a group G,  and \(S_c(G)=\sum _{\chi \in \textrm{Irr}(G)}\textrm{cod}(\chi )\) be the sum of the codegrees of the irreducible characters of G. Write \(\textrm{fcod} (G)=\frac{S_c(G)}{|G|}.\) We aim to explore the structure of finite groups in terms of \(\textrm{fcod} (G).\) On the other hand, we determine the lower bound of \(S_c(G)\) for nonsolvable groups and prove that if G is nonsolvable, then \(S_c(G)\geqslant S_c(A_5)=68,\) with equality if and only if \(G\cong A_5.\) Additionally, we show that there is a solvable group so that it has the codegree sum as \(A_5.\)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups. The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信