{"title":"基于深度强化学习的人类技能训练 \"循序渐进 \"指南","authors":"Yang Yang, Haifei Chen, Xing Liu, Panfeng Huang","doi":"10.1007/s10846-024-02147-7","DOIUrl":null,"url":null,"abstract":"<p>To achieve psychological inclusion and skill development orientation in human skill training, this paper proposes a haptic-guided training strategy generation method with Deep Reinforcement Learning (DRL)-based agent as the core and Zone of Proximal Development (ZPD) tuning as the auxiliary. The information of the expert and trainee is stored first with a designed database that can be accessed in real-time, which establishes the data foundation. Then, under the DRL framework, a strategy generation agent is designed, which consists of an actor-network and two Q-networks. The former network generates the agent’s decision policy, while the other two Q-networks work to approximate the state-action value function, and the parameters of all of them are administrated by the Soft Actor-Critic (SAC) algorithm. In addition, for the first time, the psychological ZPD evaluation method is integrated into the strategy generation of the DRL-based agent, which is utilized to describe the relationship between a trainees intrinsic skills and guidance. With it, the problem of transitional guidance or insufficient guidance can be handled well. Finally, simulation experiments validate the proposed method, demonstrating its efficiency in regulating the trainee under favorable training conditions.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"75 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Guidance-As-Progressive in Human Skill Training Based on Deep Reinforcement Learning\",\"authors\":\"Yang Yang, Haifei Chen, Xing Liu, Panfeng Huang\",\"doi\":\"10.1007/s10846-024-02147-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To achieve psychological inclusion and skill development orientation in human skill training, this paper proposes a haptic-guided training strategy generation method with Deep Reinforcement Learning (DRL)-based agent as the core and Zone of Proximal Development (ZPD) tuning as the auxiliary. The information of the expert and trainee is stored first with a designed database that can be accessed in real-time, which establishes the data foundation. Then, under the DRL framework, a strategy generation agent is designed, which consists of an actor-network and two Q-networks. The former network generates the agent’s decision policy, while the other two Q-networks work to approximate the state-action value function, and the parameters of all of them are administrated by the Soft Actor-Critic (SAC) algorithm. In addition, for the first time, the psychological ZPD evaluation method is integrated into the strategy generation of the DRL-based agent, which is utilized to describe the relationship between a trainees intrinsic skills and guidance. With it, the problem of transitional guidance or insufficient guidance can be handled well. Finally, simulation experiments validate the proposed method, demonstrating its efficiency in regulating the trainee under favorable training conditions.</p>\",\"PeriodicalId\":54794,\"journal\":{\"name\":\"Journal of Intelligent & Robotic Systems\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10846-024-02147-7\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02147-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Guidance-As-Progressive in Human Skill Training Based on Deep Reinforcement Learning
To achieve psychological inclusion and skill development orientation in human skill training, this paper proposes a haptic-guided training strategy generation method with Deep Reinforcement Learning (DRL)-based agent as the core and Zone of Proximal Development (ZPD) tuning as the auxiliary. The information of the expert and trainee is stored first with a designed database that can be accessed in real-time, which establishes the data foundation. Then, under the DRL framework, a strategy generation agent is designed, which consists of an actor-network and two Q-networks. The former network generates the agent’s decision policy, while the other two Q-networks work to approximate the state-action value function, and the parameters of all of them are administrated by the Soft Actor-Critic (SAC) algorithm. In addition, for the first time, the psychological ZPD evaluation method is integrated into the strategy generation of the DRL-based agent, which is utilized to describe the relationship between a trainees intrinsic skills and guidance. With it, the problem of transitional guidance or insufficient guidance can be handled well. Finally, simulation experiments validate the proposed method, demonstrating its efficiency in regulating the trainee under favorable training conditions.
期刊介绍:
The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization.
On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc.
On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).