{"title":"用于保护砂岩古迹的缩水甘油基多面体低聚硅倍半氧烷增强型柔性氨基硅氧烷","authors":"","doi":"10.1016/j.porgcoat.2024.108698","DOIUrl":null,"url":null,"abstract":"<div><p>To protect weathered ancient stone monuments from surface cracking and surface damage by powders, strong materials containing flexible chains are required. Herein, a facile strategy was proposed to produce hybrid octa-glycidyl polyhedral oligomeric silsesquioxane (GPOSS)-enhanced flexible siloxanes by the ring-opening reaction of GPOSS using three aminosiloxanes (bis(3-aminopropyl) terminated poly (dimethyl siloxane) (NH<sub>2</sub>-PDMS), 3-aminopropyltriethoxysilane (APTS), and N-(6-aminohexyl) aminopropyl trimethoxysilane (AHAPTMS). This produced three different protective materials (POSS-PDMS, POSS-APTS, and POSS-AHAPTMS) that greatly improved the weather resistance of sandstone monuments, especially their resistance to water, salt, temperature, and humidity. All three protective materials presented an adhesion of up to 2.4 MPa. The resistance of freeze-thaw aging cycles was much higher for the protected sandstone (104–133 cycles) compared with the unprotected sandstone (20 cycles). The three protective materials improved the salt weather resistance of protected sandstone (9–60 cycles) compared with unprotected sandstone (3 cycles), with the long-chain aminosiloxane AHAPTMS providing the best protection. The hydrophobicity of three protective materials on the sandstone surface was improved. Furthermore, the water absorption, water vapor permeability, pore size distribution, mechanical strength, light transmittance, and glass transition temperature (<em>T</em><sub>g</sub>), were all improved. The three GPOSS-enhanced flexible siloxanes are novel and eco-friendly materials for protecting sandstone monuments.</p></div>","PeriodicalId":20834,"journal":{"name":"Progress in Organic Coatings","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glycidyl polyhedral oligomeric silsesquioxane-enhanced flexible aminosiloxanes to protect sandstone monuments\",\"authors\":\"\",\"doi\":\"10.1016/j.porgcoat.2024.108698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To protect weathered ancient stone monuments from surface cracking and surface damage by powders, strong materials containing flexible chains are required. Herein, a facile strategy was proposed to produce hybrid octa-glycidyl polyhedral oligomeric silsesquioxane (GPOSS)-enhanced flexible siloxanes by the ring-opening reaction of GPOSS using three aminosiloxanes (bis(3-aminopropyl) terminated poly (dimethyl siloxane) (NH<sub>2</sub>-PDMS), 3-aminopropyltriethoxysilane (APTS), and N-(6-aminohexyl) aminopropyl trimethoxysilane (AHAPTMS). This produced three different protective materials (POSS-PDMS, POSS-APTS, and POSS-AHAPTMS) that greatly improved the weather resistance of sandstone monuments, especially their resistance to water, salt, temperature, and humidity. All three protective materials presented an adhesion of up to 2.4 MPa. The resistance of freeze-thaw aging cycles was much higher for the protected sandstone (104–133 cycles) compared with the unprotected sandstone (20 cycles). The three protective materials improved the salt weather resistance of protected sandstone (9–60 cycles) compared with unprotected sandstone (3 cycles), with the long-chain aminosiloxane AHAPTMS providing the best protection. The hydrophobicity of three protective materials on the sandstone surface was improved. Furthermore, the water absorption, water vapor permeability, pore size distribution, mechanical strength, light transmittance, and glass transition temperature (<em>T</em><sub>g</sub>), were all improved. The three GPOSS-enhanced flexible siloxanes are novel and eco-friendly materials for protecting sandstone monuments.</p></div>\",\"PeriodicalId\":20834,\"journal\":{\"name\":\"Progress in Organic Coatings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Organic Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300944024004909\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Organic Coatings","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300944024004909","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Glycidyl polyhedral oligomeric silsesquioxane-enhanced flexible aminosiloxanes to protect sandstone monuments
To protect weathered ancient stone monuments from surface cracking and surface damage by powders, strong materials containing flexible chains are required. Herein, a facile strategy was proposed to produce hybrid octa-glycidyl polyhedral oligomeric silsesquioxane (GPOSS)-enhanced flexible siloxanes by the ring-opening reaction of GPOSS using three aminosiloxanes (bis(3-aminopropyl) terminated poly (dimethyl siloxane) (NH2-PDMS), 3-aminopropyltriethoxysilane (APTS), and N-(6-aminohexyl) aminopropyl trimethoxysilane (AHAPTMS). This produced three different protective materials (POSS-PDMS, POSS-APTS, and POSS-AHAPTMS) that greatly improved the weather resistance of sandstone monuments, especially their resistance to water, salt, temperature, and humidity. All three protective materials presented an adhesion of up to 2.4 MPa. The resistance of freeze-thaw aging cycles was much higher for the protected sandstone (104–133 cycles) compared with the unprotected sandstone (20 cycles). The three protective materials improved the salt weather resistance of protected sandstone (9–60 cycles) compared with unprotected sandstone (3 cycles), with the long-chain aminosiloxane AHAPTMS providing the best protection. The hydrophobicity of three protective materials on the sandstone surface was improved. Furthermore, the water absorption, water vapor permeability, pore size distribution, mechanical strength, light transmittance, and glass transition temperature (Tg), were all improved. The three GPOSS-enhanced flexible siloxanes are novel and eco-friendly materials for protecting sandstone monuments.
期刊介绍:
The aim of this international journal is to analyse and publicise the progress and current state of knowledge in the field of organic coatings and related materials. The Editors and the Editorial Board members will solicit both review and research papers from academic and industrial scientists who are actively engaged in research and development or, in the case of review papers, have extensive experience in the subject to be reviewed. Unsolicited manuscripts will be accepted if they meet the journal''s requirements. The journal publishes papers dealing with such subjects as:
• Chemical, physical and technological properties of organic coatings and related materials
• Problems and methods of preparation, manufacture and application of these materials
• Performance, testing and analysis.