{"title":"利用 ICP-OES 对五种阿育吠陀海洋药物中的痕量元素进行阶段性比较分析,凸显其药物学和临床意义","authors":"Sandeep Bhagwan Chavan, Tanhaji Balu Walunj, Vidya Shrikant Gupta, Vineeta Vasant Deshmukh, Sadanand Prabhakar Sardeshmukh","doi":"10.1186/s40543-024-00458-w","DOIUrl":null,"url":null,"abstract":"Rasashastra, an Ayurvedic pharmaceutical branch, scientifically converts natural resources into palatable therapeutic dosage forms. Ayurvedic Marine Drugs (AMD) are mainly calcium carbonate/ calcite, but in Ayurvedic treatment modality they are uniquely used for several ailments. Moreover, their detailed microchemical compositions have seldom been reported. In this study, five raw materials, conch, oyster shell, cowry, coral, and pearl, their transitions during the manufacturing process, and the final drugs were analyzed for identification and quantitation of minor elements using a validated inductively coupled plasma optical emission spectrophotometry method. All the five raw materials contained traces of Al, Ag, B, Ba, Cu, Co, Cr, Fe, Hg, Li, K, Mg, Mn, Na, Ni, Pb, S, Sr, Tl, and Zn. Interestingly, B, Co, Cr, Li, Mn, and Ni were absent in the finished products, whereas Pb and Hg exhibited a considerable decrement during the drug formation. The first three components of principal component analysis together explained 72.09% of variance. Raw AMD indicated positive factor scores, whereas their respective purified and incinerated forms exhibited negative scores. Cluster analysis derived a dendrogram typically forming incinerated AMD group but not for the raw forms. Coral with Mg as highest content was a remarkable outlier in both these analyses as compared to Na in others. In discriminant analysis of the presence/absence of elements and periodic table-based classifications, coral and pearl showed higher variation indicating as discriminants when equated with others. Periodic table-based classification was a better model for discrimination. Correlation analysis in both classifications revealed a strong correlation of conch with oyster shells and vice versa, cowry and pearl with oyster shell and a weak correlation of coral with pearl. Coral was a good predictor followed by conch, pearl, oyster shell, and cowry, sequentially, and can be considered a moderately sensitive but highly specific model. Thus, ICP-OES technique is highly precise and accurate for assessing the micro-composition of raw, in-process, and finished products to ensure their transitions, quality, and genuineness. Such characterized traditional medicines should be further investigated in depth for their mechanistic aspects. ","PeriodicalId":14967,"journal":{"name":"Journal of Analytical Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative stagewise mapping of trace elements using ICP-OES in five Ayurvedic Marine Drugs highlights their posologic and clinical implications\",\"authors\":\"Sandeep Bhagwan Chavan, Tanhaji Balu Walunj, Vidya Shrikant Gupta, Vineeta Vasant Deshmukh, Sadanand Prabhakar Sardeshmukh\",\"doi\":\"10.1186/s40543-024-00458-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rasashastra, an Ayurvedic pharmaceutical branch, scientifically converts natural resources into palatable therapeutic dosage forms. Ayurvedic Marine Drugs (AMD) are mainly calcium carbonate/ calcite, but in Ayurvedic treatment modality they are uniquely used for several ailments. Moreover, their detailed microchemical compositions have seldom been reported. In this study, five raw materials, conch, oyster shell, cowry, coral, and pearl, their transitions during the manufacturing process, and the final drugs were analyzed for identification and quantitation of minor elements using a validated inductively coupled plasma optical emission spectrophotometry method. All the five raw materials contained traces of Al, Ag, B, Ba, Cu, Co, Cr, Fe, Hg, Li, K, Mg, Mn, Na, Ni, Pb, S, Sr, Tl, and Zn. Interestingly, B, Co, Cr, Li, Mn, and Ni were absent in the finished products, whereas Pb and Hg exhibited a considerable decrement during the drug formation. The first three components of principal component analysis together explained 72.09% of variance. Raw AMD indicated positive factor scores, whereas their respective purified and incinerated forms exhibited negative scores. Cluster analysis derived a dendrogram typically forming incinerated AMD group but not for the raw forms. Coral with Mg as highest content was a remarkable outlier in both these analyses as compared to Na in others. In discriminant analysis of the presence/absence of elements and periodic table-based classifications, coral and pearl showed higher variation indicating as discriminants when equated with others. Periodic table-based classification was a better model for discrimination. Correlation analysis in both classifications revealed a strong correlation of conch with oyster shells and vice versa, cowry and pearl with oyster shell and a weak correlation of coral with pearl. Coral was a good predictor followed by conch, pearl, oyster shell, and cowry, sequentially, and can be considered a moderately sensitive but highly specific model. Thus, ICP-OES technique is highly precise and accurate for assessing the micro-composition of raw, in-process, and finished products to ensure their transitions, quality, and genuineness. Such characterized traditional medicines should be further investigated in depth for their mechanistic aspects. \",\"PeriodicalId\":14967,\"journal\":{\"name\":\"Journal of Analytical Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Science and Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1186/s40543-024-00458-w\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Science and Technology","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s40543-024-00458-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Comparative stagewise mapping of trace elements using ICP-OES in five Ayurvedic Marine Drugs highlights their posologic and clinical implications
Rasashastra, an Ayurvedic pharmaceutical branch, scientifically converts natural resources into palatable therapeutic dosage forms. Ayurvedic Marine Drugs (AMD) are mainly calcium carbonate/ calcite, but in Ayurvedic treatment modality they are uniquely used for several ailments. Moreover, their detailed microchemical compositions have seldom been reported. In this study, five raw materials, conch, oyster shell, cowry, coral, and pearl, their transitions during the manufacturing process, and the final drugs were analyzed for identification and quantitation of minor elements using a validated inductively coupled plasma optical emission spectrophotometry method. All the five raw materials contained traces of Al, Ag, B, Ba, Cu, Co, Cr, Fe, Hg, Li, K, Mg, Mn, Na, Ni, Pb, S, Sr, Tl, and Zn. Interestingly, B, Co, Cr, Li, Mn, and Ni were absent in the finished products, whereas Pb and Hg exhibited a considerable decrement during the drug formation. The first three components of principal component analysis together explained 72.09% of variance. Raw AMD indicated positive factor scores, whereas their respective purified and incinerated forms exhibited negative scores. Cluster analysis derived a dendrogram typically forming incinerated AMD group but not for the raw forms. Coral with Mg as highest content was a remarkable outlier in both these analyses as compared to Na in others. In discriminant analysis of the presence/absence of elements and periodic table-based classifications, coral and pearl showed higher variation indicating as discriminants when equated with others. Periodic table-based classification was a better model for discrimination. Correlation analysis in both classifications revealed a strong correlation of conch with oyster shells and vice versa, cowry and pearl with oyster shell and a weak correlation of coral with pearl. Coral was a good predictor followed by conch, pearl, oyster shell, and cowry, sequentially, and can be considered a moderately sensitive but highly specific model. Thus, ICP-OES technique is highly precise and accurate for assessing the micro-composition of raw, in-process, and finished products to ensure their transitions, quality, and genuineness. Such characterized traditional medicines should be further investigated in depth for their mechanistic aspects.
期刊介绍:
The Journal of Analytical Science and Technology (JAST) is a fully open access peer-reviewed scientific journal published under the brand SpringerOpen. JAST was launched by Korea Basic Science Institute in 2010. JAST publishes original research and review articles on all aspects of analytical principles, techniques, methods, procedures, and equipment. JAST’s vision is to be an internationally influential and widely read analytical science journal. Our mission is to inform and stimulate researchers to make significant professional achievements in science. We aim to provide scientists, researchers, and students worldwide with unlimited access to the latest advances of the analytical sciences.