Jia Wang, Qin Mei, Haixia Mei, Jun Guo, Tongchang Liu
{"title":"云和降水显式预报系统天气变化模型的过冷云预报性能评估","authors":"Jia Wang, Qin Mei, Haixia Mei, Jun Guo, Tongchang Liu","doi":"10.3390/atmos15080928","DOIUrl":null,"url":null,"abstract":"Through the application of cloud top temperature data and the extraction of supercooled cloud information in cloud-type data from the next-generation Himawari-8 geostationary satellite with high spatial–temporal resolution, a quantitative evaluation of the forecasting performance of the weather modification model named the Cloud and Precipitation Explicit Forecasting System (CPEFS) was conducted. The evaluation, based on selected forecast cases from 8 days in September and October 2018 initialized at 00 and 12 UTC every day, focused especially on the forecasting performance in supercooled clouds (vertical integrated supercooled liquid water, VISL > 0), including the comprehensive spatial distribution of cloud top temperature (CTT) and 3 h precipitation over 0.1 mm (R3 > 0.1). The results indicated that the forecasting performance for VISL > 0 was relatively good, with the Threat Score (TS) ranging from 0.46 to 0.67. The forecasts initialized at 12 UTC slightly outperformed the forecasts initialized at 00 UTC. Additionally, the corresponding spatial Anomaly Correlation Coefficient (ACC) of CTT between forecasts and observations was 0.23, and the TS for R3 > 0.1 reached as high as 0.87. For a mix of cold and warm cloud systems, there was a correlation between the forecasting performance of VISL > 0 and CTT. The trends in the TS for VISL > 0 and the ACC of CTT aligned with the forecast lead-time.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"2672 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the Forecasting Performance of Supercooled Clouds for the Weather Modification Model of the Cloud and Precipitation Explicit Forecasting System\",\"authors\":\"Jia Wang, Qin Mei, Haixia Mei, Jun Guo, Tongchang Liu\",\"doi\":\"10.3390/atmos15080928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Through the application of cloud top temperature data and the extraction of supercooled cloud information in cloud-type data from the next-generation Himawari-8 geostationary satellite with high spatial–temporal resolution, a quantitative evaluation of the forecasting performance of the weather modification model named the Cloud and Precipitation Explicit Forecasting System (CPEFS) was conducted. The evaluation, based on selected forecast cases from 8 days in September and October 2018 initialized at 00 and 12 UTC every day, focused especially on the forecasting performance in supercooled clouds (vertical integrated supercooled liquid water, VISL > 0), including the comprehensive spatial distribution of cloud top temperature (CTT) and 3 h precipitation over 0.1 mm (R3 > 0.1). The results indicated that the forecasting performance for VISL > 0 was relatively good, with the Threat Score (TS) ranging from 0.46 to 0.67. The forecasts initialized at 12 UTC slightly outperformed the forecasts initialized at 00 UTC. Additionally, the corresponding spatial Anomaly Correlation Coefficient (ACC) of CTT between forecasts and observations was 0.23, and the TS for R3 > 0.1 reached as high as 0.87. For a mix of cold and warm cloud systems, there was a correlation between the forecasting performance of VISL > 0 and CTT. The trends in the TS for VISL > 0 and the ACC of CTT aligned with the forecast lead-time.\",\"PeriodicalId\":8580,\"journal\":{\"name\":\"Atmosphere\",\"volume\":\"2672 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/atmos15080928\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15080928","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Evaluation of the Forecasting Performance of Supercooled Clouds for the Weather Modification Model of the Cloud and Precipitation Explicit Forecasting System
Through the application of cloud top temperature data and the extraction of supercooled cloud information in cloud-type data from the next-generation Himawari-8 geostationary satellite with high spatial–temporal resolution, a quantitative evaluation of the forecasting performance of the weather modification model named the Cloud and Precipitation Explicit Forecasting System (CPEFS) was conducted. The evaluation, based on selected forecast cases from 8 days in September and October 2018 initialized at 00 and 12 UTC every day, focused especially on the forecasting performance in supercooled clouds (vertical integrated supercooled liquid water, VISL > 0), including the comprehensive spatial distribution of cloud top temperature (CTT) and 3 h precipitation over 0.1 mm (R3 > 0.1). The results indicated that the forecasting performance for VISL > 0 was relatively good, with the Threat Score (TS) ranging from 0.46 to 0.67. The forecasts initialized at 12 UTC slightly outperformed the forecasts initialized at 00 UTC. Additionally, the corresponding spatial Anomaly Correlation Coefficient (ACC) of CTT between forecasts and observations was 0.23, and the TS for R3 > 0.1 reached as high as 0.87. For a mix of cold and warm cloud systems, there was a correlation between the forecasting performance of VISL > 0 and CTT. The trends in the TS for VISL > 0 and the ACC of CTT aligned with the forecast lead-time.
期刊介绍:
Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.