{"title":"设计用于组织修复和再生的多糖材料","authors":"Anqi Jin, Yunyuan Shao, Fangyan Wang, Jiayin Feng, Lanjie Lei, Minghai Dai","doi":"10.1063/5.0223937","DOIUrl":null,"url":null,"abstract":"Tissue repair and regeneration are critical processes for maintaining the integrity and function of various organs and tissues. Recently, polysaccharide materials and protein materials have garnered interest for use in tissue repair strategies. However, polysaccharides are more stable and unaffected by temperature and pH changes compared to proteins, and some polysaccharides can provide stronger mechanical support, which is particularly important for constructing tissue-engineered scaffolds and wound dressings. This Review provides an in-depth overview of the origins of polysaccharides, the advantages of polysaccharide materials, and processing and design strategies. In addition, the potential of polysaccharide materials for the restoration of tissues such as skin, heart, and nerves is highlighted. Finally, we discuss in depth the challenges that polysaccharide materials still face in tissue repair, such as the stability of the material, regulating mechanical characteristics and deterioration rates under different conditions. To achieve more effective tissue repair and regeneration, future research must focus on further improving the characteristics and functionalities of polysaccharide materials.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"75 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing polysaccharide materials for tissue repair and regeneration\",\"authors\":\"Anqi Jin, Yunyuan Shao, Fangyan Wang, Jiayin Feng, Lanjie Lei, Minghai Dai\",\"doi\":\"10.1063/5.0223937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tissue repair and regeneration are critical processes for maintaining the integrity and function of various organs and tissues. Recently, polysaccharide materials and protein materials have garnered interest for use in tissue repair strategies. However, polysaccharides are more stable and unaffected by temperature and pH changes compared to proteins, and some polysaccharides can provide stronger mechanical support, which is particularly important for constructing tissue-engineered scaffolds and wound dressings. This Review provides an in-depth overview of the origins of polysaccharides, the advantages of polysaccharide materials, and processing and design strategies. In addition, the potential of polysaccharide materials for the restoration of tissues such as skin, heart, and nerves is highlighted. Finally, we discuss in depth the challenges that polysaccharide materials still face in tissue repair, such as the stability of the material, regulating mechanical characteristics and deterioration rates under different conditions. To achieve more effective tissue repair and regeneration, future research must focus on further improving the characteristics and functionalities of polysaccharide materials.\",\"PeriodicalId\":7985,\"journal\":{\"name\":\"APL Materials\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0223937\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0223937","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Designing polysaccharide materials for tissue repair and regeneration
Tissue repair and regeneration are critical processes for maintaining the integrity and function of various organs and tissues. Recently, polysaccharide materials and protein materials have garnered interest for use in tissue repair strategies. However, polysaccharides are more stable and unaffected by temperature and pH changes compared to proteins, and some polysaccharides can provide stronger mechanical support, which is particularly important for constructing tissue-engineered scaffolds and wound dressings. This Review provides an in-depth overview of the origins of polysaccharides, the advantages of polysaccharide materials, and processing and design strategies. In addition, the potential of polysaccharide materials for the restoration of tissues such as skin, heart, and nerves is highlighted. Finally, we discuss in depth the challenges that polysaccharide materials still face in tissue repair, such as the stability of the material, regulating mechanical characteristics and deterioration rates under different conditions. To achieve more effective tissue repair and regeneration, future research must focus on further improving the characteristics and functionalities of polysaccharide materials.
期刊介绍:
APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications.
In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.